An ultrafast quantum random number generator based on quantum phase fluctuations

Feihu Xu, Bing Qi, Xiongfeng Ma, He Xu, Haoxuan Zheng, and Hoi-Kwong Lo

Center for Quantum Information and Quantum Control, Department of ECE and Department of Physics, University of Toronto

Email: feihu.xu@utoronto.ca

QCRYPT2011, ETH, Zurich, Sep. 14th, 2011

THE EDWARD S. ROGERS SR. DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Outline

- Introduction
- **II** Experimental setup and results
- **III** Post-processing
- **IV** Future directions

Applications of random numbers

Scientific simulations

Market

Lottery & Gambling

Cryptography

QRNG: single photon detection

Polarization measurement [1]

Commercial QRNGs up to 16 Mb/s. (Figure is from ID Quantique)

Photon arrival time [2-3] or photon number counting [4]

- [1] T. Jennewein, et al, Rev. of Sci. Ins., 71:1675-1680, 2000.
- [2] P. Kwiat, E. Jeffrey, P. Altepeter, US Patent Appl. 20060010182, 2006.
- [3] J. Dynes, et al, App. Phy. Lett., 93, 031109 (2008)
- [4] M. Furst, et, al, Opt. Exp. 18, 13029 (2010).

UNIVERSITY OF

TORONTO

Fully integrated QRNG. (Figure is from ref [4])

QRNG: vacuum state fluctuations [1-2]

 Homodyne detection measuring the electrical field fluctuations of Vacuum state.

QRNG with 6.5 Mb/s [2]. (Figure is from ref [2])

[1] A. Trifonov and H. Vig, US Patent No. 7,284,024, 16 October 2007
[2] C. Gabriel, et al, Nature Photonics, 4, 711–715 (2010)

Motivation: QRNG existing problems

Low generation rate

- Typical rates: *6.5 Mb/s* using vacuum state fluctuations, *16 Mb/s* using polarization measurement (commercial QRNG), *152Mb/s* using photon arrival time [M. Wahl, et al, APL, 98, 171105, 2011].
- High cost
 - For example, the IDQ system (Quantis, 16Mb/s) costs 2230 €.
- Eavesdropper (Eve) may have partial information
 - Control side information (detector noise, environmental noise, etc).

Probability

Our approach: randomness from laser phase fluctuations

[1] A. Yariv and P. Yeh, "Photonics: optical electronics in modern communications" (6th edition), Oxford University Press (2007). [2] K. Petermann, "Laser diode modulation and noise", (Springer, 1988).

How the system works?

TORONTO

Our previous work

L: 1550nm cw DFB laser diode; PC1,2: polarization controller; PD2: 1MHz photo-receiver; OSC: 3GHz oscilloscope; C_{1,2}: fiber couplers PD1: 5GHz photo-detector; PM: phase modulator; Comp: computer with DAQ.

Self-heterodyne system with off-the-shelf components.

• 500 Mb/s

B. Qi, Y.M. Chi, H.-K. Lo, L. Qian, AQIS (2009)B. Qi, Y.M. Chi, H.-K. Lo, L. Qian, *Optics Letters*, 35, 312 (2010).

Our new setup

PLC-MZI: planar lightwave circuit Mach-Zehnder interferometer;
ADC: 8-bit analog-to-digital convertor.
Sampling rate: 1G samples per second
Extractable random bits: 6.7 bits/ sample

Generation rate over 6 Gb/s!

Measurement results

Quantum phase fluctuation is dominant!

Quantum signal and classical noise

- Laser phase fluctuations [1]
 - Quantum: spontaneous emission Inversely power-dependent (Q/P)
 - Classical: cavity instability, etc. power-independent (C)
- Electrical noise (detector) and EM noise (environment) F
- Quantify the parameters:

$$V^{(t) \propto c} < V^2 >= AP^2 < \Delta \theta^2 > +F$$

$$= AP^2 \left(\frac{Q}{P} + C\right) + F = AQP + ACP^2 + F$$

$$\downarrow elay$$

[1] C. H. Henry, IEEE J. Quantum Electron. QE-18, 259 (1982).

Quantum signal and classical noise

UNIVERSITY OF TORONTO

Post-processing

- Why we need post-processing?
 - Eve may have partial information (by controlling classical noise).
 - Quantum fluctuation is a non-uniform distribution (Gaussian).
- Extract out uniform-quantum randomness!

Randomness extractor!

Procedure

- Min-entropy evaluation
- Randomness extraction

Min-entropy evaluation

F. Xu, B. Qi, X. Ma, H. Xu, H. Zheng, H.-K. Lo, *arXiv: 1109.0643* (2011) X. Ma, et al, *under preparation*, (2011)

Randomness extraction

Implement two extractors

- Universal Hashing [1]
 - With Toeplitz matrix
- Trevisan's Extractor [2]

Details of implementations: Xiongfeng Ma, et al, *under preparation* (2011)

QRNG with information-theoretically proven randomness!

M. Wegman and J. Carter, Journal of computer and system sciences 22, 265 (1981).
 L. Trevisan, Journal of the ACM 48, 2001 (1999).

Extraction results: universal hashing

TestU01 Small Crush

1 GHz × 6.7 bits = 6.7 Gb/s

Summary

Demonstrate a simple and fast QRNG over 6 Gb/s!
 Quantify the quantum randomness by min-entropy!
 Implement two randomness extractors to extract out the quantum randomness!

Future directions

Optimize system design.

- High-speed electronics for real time randomness extraction.
- Random number storage & transfer.

Acknowledgements

OUANTUM INFORMATION NETWORK CANADA RÉSEAU DE L'INFORMATION OUANTIQUE CANADA

Cifar Canadian Institute for Advanced Research

Previous works:
B. Qi, et al, AQIS (2009)
B. Qi, et al, Opt. Lett. 35, 312 (2010)

Current works:

- Feihu Xu, et al, arXiv: 1109.0643 (2011)
- Xiongfeng Ma, et al, under preparation (2011)

Thank You !

Backup part

Autocorrelation of raw data

Autocorrelation of Toeplitz-hashing output

Autocorrelation of Trevisan's extractor output

Diehard

	Pseudo-RNG	Raw data	Trevisan's		Toeplitz-hashing	
Statistical test	Result	Result	p-value	result	p-value	result
Birthday Spacings [KS]	success	failure	0.82263	success	0.340863	success
Overlapping permutations	success	failure	0.679927	success	0.403824	success
Ranks of 31x31 matrices	success	failure	0.419095	success	0.349441	success
Ranks of 31x32 matrices	success	failure	0.715705	success	0.816752	success
Ranks of 6x8 matrices [KS]	success	failure	0.195485	success	0.408573	success
Bit stream test	success	failure	0.048260	success	0.281680	success
Monkey test OPSO	success	failure	0.027300	success	0.892600	success
Monkey test OQSO	success	failure	0.023200	success	0.267200	success
Monkey test DNA	failure	failure	0.038000	success	0.736700	success
Count 1's in stream of bytes	success	failure	0.380162	success	0.639691	success
Count 1's in specific bytes	failure	failure	0.020417	success	0.373149	success
Parking lot test [KS]	failure	failure	0.629013	success	0.151689	success
Minimum distance test [KS]	success	failure	0.019499	success	0.688780	success
Random spheres test [KS]	success	failure	0.488703	success	0.939227	success
Squeeze test	success	failure	0.238004	success	0.155403	success
Overlapping sums test [KS]	success	failure	0.022339	success	0.909675	success
Runs test (up) [KS]	failure	failure	0.403504	success	0.181024	success
Runs test (down) [KS]	success	failure	0.119132	success	0.668512	success
Craps test No. of wins	success	failure	0.757521	success	0.826358	success
Craps test throws/game	success	failure	0.179705	success	0.862986	success

TABLE V: Diehard. Data size is 240MB its. For the cases of multiple P-values, a Kolmogorov-smirnov (KS) test is used to obtain a final P-value, which measures the uniformity of the multiple P-values. The test is successful if all final P-values satisfy $0.01 \le P \le 0.99$

NIST

	Pseudo-RNG	Raw data	Toeplitz-hashing		
Statistical test	Result	Result	p-value	Proportion	Result
Frequency	success	failure	0.373625	0.9900	success
Block-frequency	success	failure	0.310049	0.9960	success
Cumulative sums	success	failure	0.422638	0.9980	success
Runs	success	failure	0.703417	0.9900	success
LongestRun	success	failure	0.013569	0.9880	success
Rank	success	failure	0.411840	0.9940	success
FFT	success	failure	0.987079	0.9860	success
NonOverlappingTemplate	failure	failure	0.727851	0.9820	success
overlappingTemplate	success	failure	0.110083	0.9780	success
Universal	success	failure	0.962688	0.9880	success
ApproximateEntropy	success	failure	0.674543	0.9920	success
Random-excursions	success	failure	0.409207	0.9900	success
Random-excursions Variant	success	failure	0.426358	0.9840	success
Serial	success	failure	0.217570	0.9860	success
Linear-complexity	success	failure	0.657833	0.9940	success

TABLE VI: **NIST.** Data size is 3.25 Gbits (500 sequences with each sequence around 6.5 Mbits). To pass the test, P-value should be larger than the lowest significant level $\alpha = 0.01$, and the proportion of sequences satisfying $P > \alpha$ should be greater than 0.976. Where the test has multiple P-values, the worst case is selected.

TestU01

	Pseudo-RNG	Raw data	Toeplitz-hashing	
Statistical Test	Result	Result	p-value	Result
BirthdaySpacings	Success	failure	0.5300	success
Collision	Success	failure	0.1500	success
Gap Chi-square	success	failure	0.8900	success
SimpPoker Chi-square	success	failure	0.3500	success
CouponCollector Chi-square	success	failure	0.6700	success
MaxOft Chi-square	success	failure	0.6900	success
MaxOft Anderson-Darling	success	failure	0.9500	success
WeightDistrib Chi-square	success	failure	0.5600	success
MatrixRank Chi-square	success	failure	0.5100	success
Hammingindep Chi-square	success	failure	0.1000	success
RandomWalk1 H Chi-square	success	failure	0.9931	success
RandomWalk1 M Chi-square	success	failure	0.8300	success
RandomWalk1 J Chi-square	success	failure	0.9400	success
RandomWalk1 R Chi-square	success	failure	0.7000	success
RandomWalk1 C Chi-square	success	failure	0.6600	success

TABLE VII: TestU01 (Small Crush). Given the constraint of the data size and computational power of Crush and Big Crush of TestU01, we only perform Small Crush test here. Data size is 8 Gbits. The P-value of falling a test converges to 0 or 1 (eps or 1-eps). Where the test has multiple P-values, the worst case is selected.

Our approach: randomness from laser phase noise • Physical origin: spontaneous emissions [1, 2]

 Quantum phase change within time t can be treated as a Gaussian white noise [1,2]

$$\Delta \theta(t) \sim N(0, 2\pi t \Delta f)$$
Laser linewidth

UNIVERSITY OF

TORONTO

[1] A. Yariv and P. Yeh, "Photonics: optical electronics in modern communications" (6th edition), Oxford University Press (2007).
[2] K. Petermann, "Laser diode modulation and noise", (Springer, 1988).

Laser Intensity Noise

