Quantum to Classical

Randomness Extractors

Mario Berta, Omar Fawzi, Stephanie Wehner

Full version preprint available at arXiv:II I I.2026v3

EMM Zürich
 (4) McGill Centre for Ouantum Technologies
 National University of Singapore

Outline

- (Classical to Classical) Randomness Extractors

Outline

- (Classical to Classical) Randomness Extractors
- Main Contribution: Quantum to Classical Randomness Extractors

Outline

- (Classical to Classical) Randomness Extractors
- Main Contribution: Quantum to Classical Randomness Extractors
- Application: Security in the Noisy-Storage Model

Outline

- (Classical to Classical) Randomness Extractors
- Main Contribution: Quantum to Classical Randomness Extractors
- Application: Security in the Noisy-Storage Model
- Entropic Uncertainty Relations with Quantum Side Information

Outline

- (Classical to Classical) Randomness Extractors
- Main Contribution: Quantum to Classical Randomness Extractors
- Application: Security in the Noisy-Storage Model
- Entropic Uncertainty Relations with Quantum Side Information
- Conclusions / Open Problems

Classical to Classical (CC)-Randomness Extractors (I)

- Given an (unknown) weak source of classical randomness, how to convert it into uniformly random bits?

Source $\rightarrow N=N_{1}, N_{2}, \ldots, N_{q}$

Classical to Classical (CC)-Randomness Extractors (I)

- Given an (unknown) weak source of classical randomness, how to convert it into uniformly random bits?

$$
\text { Source } \rightarrow N=N_{1}, N_{2}, \ldots, N_{q} \quad \text { Ex: } \quad \operatorname{Pr}\left[N_{1}=0\right]=\frac{1}{2}+\delta_{1}, \quad \operatorname{Pr}\left[N_{2}=0\right]=\frac{1}{2}+\delta_{2}
$$

Classical to Classical (CC)-Randomness Extractors (I)

- Given an (unknown) weak source of classical randomness, how to convert it into uniformly random bits?

$$
\text { Source } \rightarrow N=N_{1}, N_{2}, \ldots, N_{q} \quad \text { Ex: } \quad \operatorname{Pr}\left[N_{1}=0\right]=\frac{1}{2}+\delta_{1}, \quad \operatorname{Pr}\left[N_{2}=0\right]=\frac{1}{2}+\delta_{2} \text {, }
$$

Function: $f\left(N=N_{1}, \ldots, N_{q}\right)=M$

Classical to Classical (CC)-Randomness Extractors (I)

- Given an (unknown) weak source of classical randomness, how to convert it into uniformly random bits?

$$
\text { Source } \rightarrow N=N_{1}, N_{2}, \ldots, N_{q} \quad \underline{E x}: \quad \operatorname{Pr}\left[N_{1}=0\right]=\frac{1}{2}+\delta_{1}, \quad \operatorname{Pr}\left[N_{2}=0\right]=\frac{1}{2}+\delta_{2},
$$

- Function: $f\left(N=N_{1}, \ldots, N_{q}\right)=M \quad$ EX: $\operatorname{Pr}\left[N_{i}=0\right]=\frac{2}{3} \quad \operatorname{Pr}\left[N_{i}=1\right]=\frac{1}{3}$

$$
\begin{aligned}
& M=f\left(N_{1} N_{2} N_{3}\right)=N_{1}+N_{2}+N_{3} \quad \bmod 2 \\
& \operatorname{Pr}[M=0] \approx 0.52
\end{aligned}
$$

Classical to Classical (CC)-Randomness Extractors (I)

- Given an (unknown) weak source of classical randomness, how to convert it into uniformly random bits?

$$
\text { Source } \rightarrow N=N_{1}, N_{2}, \ldots, N_{q} \quad \text { Ex: } \quad \operatorname{Pr}\left[N_{1}=0\right]=\frac{1}{2}+\delta_{1}, \quad \operatorname{Pr}\left[N_{2}=0\right]=\frac{1}{2}+\delta_{2},
$$

- Function: $f\left(N=N_{1}, \ldots, N_{q}\right)=M \quad$ EX: $\quad \operatorname{Pr}\left[N_{i}=0\right]=\frac{2}{3} \quad \operatorname{Pr}\left[N_{i}=1\right]=\frac{1}{3}$

$$
\begin{aligned}
& M=f\left(N_{1} N_{2} N_{3}\right)=N_{1}+N_{2}+N_{3} \quad \bmod 2 \\
& \operatorname{Pr}[M=0] \approx 0.52
\end{aligned}
$$

-

Only minimal guarantee about the randomness of the source, high minentropy: $H_{\min }(N)_{P}=-\log \max _{n} P_{N}(n)=-\log p_{\text {guess }}(N)_{P}$.

Classical to Classical (CC)-Randomness Extractors (I)

- Given an (unknown) weak source of classical randomness, how to convert it into uniformly random bits?

$$
\text { Source } \rightarrow N=N_{1}, N_{2}, \ldots, N_{q} \quad \text { EX: } \quad \operatorname{Pr}\left[N_{1}=0\right]=\frac{1}{2}+\delta_{1}, \quad \operatorname{Pr}\left[N_{2}=0\right]=\frac{1}{2}+\delta_{2},
$$

- Function: $f\left(N=N_{1}, \ldots, N_{q}\right)=M \quad$ Ex: $\operatorname{Pr}\left[N_{i}=0\right]=\frac{2}{3} \quad \operatorname{Pr}\left[N_{i}=1\right]=\frac{1}{3}$

$$
\begin{aligned}
& M=f\left(N_{1} N_{2} N_{3}\right)=N_{1}+N_{2}+N_{3} \quad \bmod 2 \\
& \operatorname{Pr}[M=0] \approx 0.52
\end{aligned}
$$

- Only minimal guarantee about the randomness of the source, high minentropy: $H_{\text {min }}(N)_{P}=-\log \max _{n} P_{N}(n)=-\log p_{\text {guess }}(N)_{P}$.
- Not possible to obtain randomness using a deterministic function, invest a small amount of perfect randomness:

Classical to Classical (CC)-Randomness Extractors (I)

- Given an (unknown) weak source of classical randomness, how to convert it into uniformly random bits?

$$
\text { Source } \rightarrow N=N_{1}, N_{2}, \ldots, N_{q} \quad \text { EX: } \quad \operatorname{Pr}\left[N_{1}=0\right]=\frac{1}{2}+\delta_{1}, \quad \operatorname{Pr}\left[N_{2}=0\right]=\frac{1}{2}+\delta_{2},
$$

- Function: $f\left(N=N_{1}, \ldots, N_{q}\right)=M \quad$ Ex: $\quad \operatorname{Pr}\left[N_{i}=0\right]=\frac{2}{3} \quad \operatorname{Pr}\left[N_{i}=1\right]=\frac{1}{3}$

$$
\begin{aligned}
& M=f\left(N_{1} N_{2} N_{3}\right)=N_{1}+N_{2}+N_{3} \quad \bmod 2 \\
& \operatorname{Pr}[M=0] \approx 0.52
\end{aligned}
$$

- Only minimal guarantee about the randomness of the source, high minentropy: $H_{\text {min }}(N)_{P}=-\log \max _{n} P_{N}(n)=-\log p_{\text {guess }}(N)_{P}$.
- Not possible to obtain randomness using a deterministic function, invest a small amount of perfect randomness:

- Lost randomness? Strong extractors: (M, D) are jointly uniform.

Classical to Classical (CC)-Randomness Extractors (I)

- Given an (unknown) weak source of classical randomness, how to convert it into uniformly random bits?

$$
\text { Source } \rightarrow N=N_{1}, N_{2}, \ldots, N_{q} \quad \text { EX: } \quad \operatorname{Pr}\left[N_{1}=0\right]=\frac{1}{2}+\delta_{1}, \quad \operatorname{Pr}\left[N_{2}=0\right]=\frac{1}{2}+\delta_{2},
$$

- Function: $f\left(N=N_{1}, \ldots, N_{q}\right)=M \quad$ Ex: $\quad \operatorname{Pr}\left[N_{i}=0\right]=\frac{2}{3} \quad \operatorname{Pr}\left[N_{i}=1\right]=\frac{1}{3}$

$$
\begin{aligned}
& M=f\left(N_{1} N_{2} N_{3}\right)=N_{1}+N_{2}+N_{3} \quad \bmod 2 \\
& \operatorname{Pr}[M=0] \approx 0.52
\end{aligned}
$$

- Only minimal guarantee about the randomness of the source, high minentropy: $H_{\text {min }}(N)_{P}=-\log \max _{n} P_{N}(n)=-\log p_{\text {guess }}(N)_{P}$.
- Not possible to obtain randomness using a deterministic function, invest a small amount of perfect randomness:

- Lost randomness? Strong extractors: (M, D) are jointly uniform.
- Applications in information theory, cryptography and computational complexity theory [1,2].

Classical to Classical (CC)-Randomness Extractors (II)

- Deal with prior knowledge (trivial for classical side information [3]), in general problematic for quantum side information [4]! Source described by classical-quantum (cq)state:

$$
\rho_{N E}=\sum_{n} p_{n}|\eta\rangle\left\langle\left. n\right|_{N} \otimes \rho_{E}^{n} .\right.
$$

Classical to Classical (CC)-Randomness Extractors (II)

- Deal with prior knowledge (trivial for classical side information [3]), in general problematic for quantum side information [4]! Source described by classical-quantum (cq)state:

$$
\rho_{N E}=\sum_{n} p_{n}|n\rangle\left\langle\left. n\right|_{N} \otimes \rho_{E}^{n} .\right.
$$

Classical to Classical (CC)-Randomness Extractors (II)

- Deal with prior knowledge (trivial for classical side information [3]), in general problematic for quantum side information [4]! Source described by classical-quantum (cq)state:

- Guarantee about conditional min-entropy of the source: $H_{\min }(N \mid E)_{\rho}=-\log p_{\text {guess }}(N \mid E)_{\rho}$.

Classical to Classical (CC)-Randomness Extractors (II)

- Deal with prior knowledge (trivial for classical side information [3]), in general problematic for quantum side information [4]! Source described by classical-quantum (cq)state:

$$
\rho_{N E}=\sum_{n} p_{n}|n\rangle\left\langle\left. n\right|_{N} \otimes \rho_{E}^{n} .\right.
$$

- Guarantee about conditional min-entropy of the source: $H_{\min }(N \mid E)_{\rho}=-\log p_{\text {guess }}(N \mid E)_{\rho}$.
- Ex: Two-universal hashing / privacy amplification [5]. For all cq-states $\rho_{N E}$ with
$H_{\min }(N \mid E)_{\rho} \geq k$, we have $\left\|\rho_{M E D}-\frac{\operatorname{id}_{M}}{M} \otimes \rho_{E D}\right\|_{1} \leq \varepsilon$ for $M=2^{k} \cdot \varepsilon^{2}$.
Strong (k, ε) extractor (against quantum side information), $D=O(N)$.

Quantum to Classical (QC)-Randomness Extractors - Definition (I)

- Motivation: How to get weak randomness at first? How much randomness can be gained from a quantum source? Are all measurements equally "good" at obtaining randomness from a quantum system?

Quantum to Classical (QC)-Randomness Extractors - Definition (I)

- Motivation: How to get weak randomness at first? How much randomness can be gained from a quantum source? Are all measurements equally "good" at obtaining randomness from a quantum system?

Quantum to Classical (QC)-Randomness Extractors - Definition (I)

- Motivation: How to get weak randomness at first? How much randomness can be gained from a quantum source? Are all measurements equally "good" at obtaining randomness from a quantum system?

- Idea: Same setup as in the classical case (no control of the source)! Only guarantee about the conditional min-entropy [6]:
$H_{\min }(N \mid E)_{\rho}=-\log N \max _{\Lambda_{E \rightarrow N^{\prime}}} F\left(\Phi_{N N^{\prime}},\left(\operatorname{id}_{N} \otimes \Lambda_{E \rightarrow N^{\prime}}\right)\left(\rho_{N E}\right)\right)$

$$
\begin{aligned}
& |\Phi\rangle_{N N^{\prime}}=\frac{1}{\sqrt{N}} \sum_{n=1}^{N}|n\rangle_{N} \otimes|n\rangle_{N^{\prime}} \\
& F(\rho, \sigma)=\|\sqrt{\rho} \sqrt{\sigma}\|_{1}^{2}
\end{aligned}
$$

Quantum to Classical (QC)-Randomness Extractors - Definition (I)

- Motivation: How to get weak randomness at first? How much randomness can be gained from a quantum source? Are all measurements equally "good" at obtaining randomness from a quantum system?

- Idea: Same setup as in the classical case (no control of the source)! Only guarantee about the conditional min-entropy [6]:
$H_{\text {min }}(N \mid E)_{\rho}=-\log N \max _{\Lambda_{E \rightarrow N^{\prime}}} F\left(\Phi_{N N^{\prime}},\left(\mathrm{id}_{N} \otimes \Lambda_{E \rightarrow N^{\prime}}\right)\left(\rho_{N E}\right)\right)$

$$
\begin{aligned}
& |\Phi\rangle_{N N^{\prime}}=\frac{1}{\sqrt{N}} \sum_{n=1}^{N}|n\rangle_{N} \otimes|n\rangle_{N^{\prime}} \\
& F(\rho, \sigma)=\|\sqrt{\rho} \sqrt{\sigma}\|_{1}^{2}
\end{aligned}
$$

- Can get negative for entangled input states, in fact for MES: $H_{\min }(N \mid E)_{\Phi}=-\log N$.

Quantum to Classical (QC)-Randomness Extractors - Definition (II)

Quantum to Classical (QC)-Randomness Extractors - Definition (II)

Quantum to Classical (QC)-Randomness Extractors - Definition (II)

Definition:A set of unitaries $\left\{U_{1}, \ldots, U_{D}\right\}$ defines a strong (k, ε) qc-extractor (against quantum side information) if for any state $\rho_{N E}$ with $H_{\min }(N \mid E)_{\rho} \geq k$,

$$
\| \frac{1}{D} \sum_{i=1}^{D} \tau_{N \rightarrow M}\left(U_{i} \rho_{N E} U_{i}^{\dagger}\right) \otimes|i\rangle\left\langle\left. i\right|_{D}-\frac{\operatorname{id}_{M}}{M} \otimes \rho_{E D} \|_{1} \leq \varepsilon .\right.
$$

Quantum to Classical (QC)-Randomness Extractors - Definition (II)

0
Definition:A set of unitaries $\left\{U_{1}, \ldots, U_{D}\right\}$ defines a strong (k, ε) qc-extractor (against quantum side information) if for any state $\rho_{N E}$ with $H_{\min }(N \mid E)_{\rho} \geq k$,

$$
\| \frac{1}{D} \sum_{i=1}^{D} \tau_{N \rightarrow M}\left(U_{i} \rho_{N E} U_{i}^{\dagger}\right) \otimes|i\rangle\left\langle\left. i\right|_{D}-\frac{\mathrm{id}_{M}}{M} \otimes \rho_{E D} \|_{1} \leq \varepsilon\right.
$$

- Without side information, this corresponds to ε-metric uncertainty relations [7].

Quantum to Classical (QC)-Randomness Extractors - Definition (II)

Definition:A set of unitaries $\left\{U_{1}, \ldots, U_{D}\right\}$ defines a strong (k, ε) qc-extractor (against quantum side information) if for any state $\rho_{N E}$ with $H_{\text {min }}(N \mid E)_{\rho} \geq k$,

$$
\| \frac{1}{D} \sum_{i=1}^{D} \tau_{N \rightarrow M}\left(U_{i} \rho_{N E} U_{i}^{\dagger}\right) \otimes|i\rangle\left\langle\left. i\right|_{D}-\frac{\operatorname{id}_{M}}{M} \otimes \rho_{E D} \|_{1} \leq \varepsilon .\right.
$$

-

Without side information, this corresponds to ε-metric uncertainty relations [7].

- Fully quantum versions of this: decoupling theorems (quantum coding theory) [8], quantum state randomization [9], quantum extractors [10]: quantum to quantum (qq)-randomness extractors!

Quantum to Classical (QC)-Randomness Extractors - Parameters

- Probabilistic construction (random unitaries).

Quantum to Classical (QC)-Randomness Extractors - Parameters

- Probabilistic construction (random unitaries).

\circ	Output size: $M=\min \left\{N, N \cdot 2^{k} \cdot \epsilon^{4}\right\}$
\circ	Seed size: $D=M \cdot \log N \cdot \varepsilon^{-4}$

Quantum to Classical (QC)-Randomness Extractors - Parameters

- Probabilistic construction (random unitaries).
- Output size: $M=\min \left\{N, N \cdot 2^{k} \cdot \epsilon^{4}\right\}$
- Seed size: $D=M \cdot \log N \cdot \varepsilon^{-4}$
- Converse bounds.

Quantum to Classical (QC)-Randomness Extractors - Parameters

- Probabilistic construction (random unitaries).
- Output size: $M=\min \left\{N, N \cdot 2^{k} \cdot \epsilon^{4}\right\}$
- Seed size: $D=M \cdot \log N \cdot \varepsilon^{-4}$
- Converse bounds.
- Output size: $M \leq N \cdot 2^{k_{\varepsilon}}$, where $2^{k_{\varepsilon}}=H_{\min }^{\varepsilon}(N \mid E)_{\rho}=\max _{\bar{\rho} \in \mathcal{B}_{\varepsilon}(\rho)} H_{\min }(N \mid E)_{\bar{\rho}}$ (smooth entropies [5, II]).
- Seed size: $D \geq \varepsilon^{-1}$

Quantum to Classical (QC)-Randomness Extractors - Parameters

- Probabilistic construction (random unitaries).
- Output size: $M=\min \left\{N, N \cdot 2^{k} \cdot \epsilon^{4}\right\}$
- Seed size: $D=M \cdot \log N \cdot \varepsilon^{-4}$
- Converse bounds.
- Output size: $M \leq N \cdot 2^{k_{\varepsilon}}$, where $2^{k_{\varepsilon}}=H_{\min }^{\varepsilon}(N \mid E)_{\rho}=\max _{\bar{\rho} \in \mathcal{B}_{\varepsilon}(\rho)} H_{\text {min }}(N \mid E)_{\bar{\rho}}$ (smooth entropies [5, I I]).
- Seed size: $D \geq \varepsilon^{-1}$

Huge gap! We know that our proof technique can only yield

$$
D \geq \varepsilon^{-2} \cdot \min \left\{N \cdot 2^{-k-1}, M / 4\right\}[12] .
$$

Quantum to Classical (QC)-Randomness Extractors - Parameters

- Probabilistic construction (random unitaries).

。 Output size: $M=\min \left\{N, N \cdot 2^{k} \cdot \epsilon^{4}\right\}$

- Seed size: $D=M \cdot \log N \cdot \varepsilon^{-4}$
- Converse bounds.
- Output size: $M \leq N \cdot 2^{k_{\varepsilon}}$, where $2^{k_{\varepsilon}}=H_{\min }^{\varepsilon}(N \mid E)_{\rho}=\max _{\bar{\rho} \in \mathcal{B}_{\varepsilon}(\rho)} H_{\min }(N \mid E)_{\bar{\rho}}$ (smooth entropies [5, I I]).
- Seed size: $D \geq \varepsilon^{-1} \longleftarrow$ Huge gap! We know that our proof technique can only yield

$$
D \geq \varepsilon^{-2} \cdot \min \left\{N \cdot 2^{-k-1}, M / 4\right\}[12] .
$$

- Find explicit constructions!

Quantum to Classical (QC)-Randomness Extractors - Explicit Constructions

Quantum to Classical (QC)-Randomness Extractors - Explicit Constructions

- (Almost) unitary two-designs reproduce second moment of random unitaries [8,13]:

$$
M=\min \left\{N, N \cdot 2^{k} \cdot \epsilon^{2}\right\}
$$

$$
D=O\left(N^{4}\right)
$$

Quantum to Classical (QC)-Randomness Extractors - Explicit Constructions

- (Almost) unitary two-designs reproduce second moment of random unitaries [8,13]:

$$
M=\min \left\{N, N \cdot 2^{k} \cdot \epsilon^{2}\right\} \quad D=O\left(N^{4}\right)
$$

- Set of unitaries defined by a full set of mutually unbiased bases together with two-wise independent permutations:

$$
M=\min \left\{N, N \cdot 2^{k} \cdot \epsilon^{2}\right\} \quad D=N \cdot(N+1)^{2}
$$

Quantum to Classical (QC)-Randomness Extractors - Explicit Constructions

- (Almost) unitary two-designs reproduce second moment of random unitaries [8,13]:

$$
M=\min \left\{N, N \cdot 2^{k} \cdot \epsilon^{2}\right\} \quad D=O\left(N^{4}\right)
$$

- Set of unitaries defined by a full set of mutually unbiased bases together with two-wise independent permutations:

$$
M=\min \left\{N, N \cdot 2^{k} \cdot \epsilon^{2}\right\} \quad D=N \cdot(N+1)^{2}
$$

Bitwise qc-extractors! Let $N=2^{n}, M=2^{m}$. Set of unitaries defined by a full set of mutually unbiased bases for each qubit, $\left\{\sigma_{X}, \sigma_{Y}, \sigma_{Z}\right\}^{\otimes n}$, together with two-wise independent permutations:

$$
M=O\left(N^{\log 3-1} \cdot \varepsilon^{4}\right) \cdot \min \left\{1,2^{k}\right\} \quad D=N \cdot(N-1) \cdot 3^{\log N}
$$

Application:Two-Party Cryptography

- Example: secure function evaluation.

Application:Two-Party Cryptography

- Example: secure function evaluation.

Application:Two-Party Cryptography

- Example: secure function evaluation.

- Not possible to solve without assumptions [I7].

Application:Two-Party Cryptography

- Example: secure function evaluation.

- Not possible to solve without assumptions [I7].
- Classical assumptions are typically computational assumptions (e.g. factoring is hard).

Application:Two-Party Cryptography

- Example: secure function evaluation.

- Not possible to solve without assumptions [I7].
- Classical assumptions are typically computational assumptions (e.g. factoring is hard).
- Physical assumption: bounded quantum storage [18], secure function evaluation becomes possible [19].

Application: Security in the NoisyStorage Model [20]

- What the adversary can do: computationally all powerful, unlimited classical storage, actions are instantaneous, BUT noisy (bounded) quantum storage.

Application: Security in the NoisyStorage Model [20]

- What the adversary can do: computationally all powerful, unlimited classical storage, actions are instantaneous, BUT noisy (bounded) quantum storage.

Application: Security in the NoisyStorage Model [20]

- What the adversary can do: computationally all powerful, unlimited classical storage, actions are instantaneous, BUT noisy (bounded) quantum storage.

0
Basic idea: protocol will have have waiting times, in which noisy storage must be used!

Application: Security in the NoisyStorage Model [20]

- What the adversary can do: computationally all powerful, unlimited classical storage, actions are instantaneous, BUT noisy (bounded) quantum storage.

Basic idea: protocol will have have waiting times, in which noisy storage must be used!

Implement task 'weak string erasure' (sufficient [2I]). Using bitwise qc-randomness extractors, we can link security to the entanglement fidelity (quantum capacity) of the noisy quantum storage (improves [19,22])!

Entropic Uncertainty Relations with Quantum Side Information

- Review article [14]. Given a quantum state ρ and a set of measurements $\left\{K_{1}, \ldots, K_{D}\right\}$ these relations usually take the form (where H (.) denotes e.g. the Shannon entropy):

$$
H(K \mid D)=\frac{1}{D} \sum_{i=1}^{D} H\left(K_{i} \mid D=i\right) \geq \operatorname{const}(K)
$$

Entropic Uncertainty Relations with Quantum Side Information

- Review article [14]. Given a quantum state ρ and a set of measurements $\left\{K_{1}, \ldots, K_{D}\right\}$ these relations usually take the form (where H (.) denotes e.g. the Shannon entropy):

$$
H(K \mid D)=\frac{1}{D} \sum_{i=1}^{D} H\left(K_{i} \mid D=i\right) \geq \operatorname{const}(K)
$$

- Idea of [15]: add quantum side information! Start with a bipartite quantum state $\rho_{A E}$ and a set of measurements $\left\{K_{1}, \ldots, K_{D}\right\}$ on A :

$$
H(K \mid E D)=\frac{1}{D} \sum_{i=1}^{D} H\left(K_{i} \mid E D=i\right) \geq \operatorname{const}(K)+H(A \mid E),
$$

here $H(A)_{\rho}=-\operatorname{tr}\left[\rho_{A} \log \rho_{A}\right]$, the von Neumann entropy, and its conditional version $H(A \mid B)_{\rho}=H(A B)_{\rho}-H(B)_{\rho}$ (which can get negative for entangled input states!).

Entropic Uncertainty Relations with Quantum Side Information

- Review article [14]. Given a quantum state ρ and a set of measurements $\left\{K_{1}, \ldots, K_{D}\right\}$ these relations usually take the form (where H (.) denotes e.g. the Shannon entropy):

$$
H(K \mid D)=\frac{1}{D} \sum_{i=1}^{D} H\left(K_{i} \mid D=i\right) \geq \operatorname{const}(K)
$$

- Idea of [15]: add quantum side information! Start with a bipartite quantum state $\rho_{A E}$ and a set of measurements $\left\{K_{1}, \ldots, K_{D}\right\}$ on A :

$$
H(K \mid E D)=\frac{1}{D} \sum_{i=1}^{D} H\left(K_{i} \mid E D=i\right) \geq \operatorname{const}(K)+H(A \mid E),
$$

here $H(A)_{\rho}=-\operatorname{tr}\left[\rho_{A} \log \rho_{A}\right]$, the von Neumann entropy, and its conditional version $H(A \mid B)_{\rho}=H(A B)_{\rho}-H(B)_{\rho}$ (which can get negative for entangled input states!).

QC-extractors (against quantum side information) give entropic uncertainty relations with quantum side information!

Entropic uncertainty relations with quantum side information together with ccextractors give qc-extractors (against quantum side information) [16]!

Conclusions / Open Problems

- Definition of quantum to classical (qc)-randomness extractors.
- Probabilistic and explicit constructions as well as converse bounds.
- Security in the noisy-storage model linked to the quantum capacity.
- Close relation to entropic uncertainty relations with quantum side information.

Conclusions / Open Problems

- Definition of quantum to classical (qc)-randomness extractors.
- Probabilistic and explicit constructions as well as converse bounds.
- Security in the noisy-storage model linked to the quantum capacity.
- Close relation to entropic uncertainty relations with quantum side information.
- Relation between $q q^{-}$, qc-, and cc-extractors?

Conclusions / Open Problems

- Definition of quantum to classical (qc)-randomness extractors.
- Probabilistic and explicit constructions as well as converse bounds.
- Security in the noisy-storage model linked to the quantum capacity.
- Close relation to entropic uncertainty relations with quantum side information.
- Relation between $\mathrm{qq-}$, qc-, and cc-extractors?
- Seed length: $\varepsilon^{-1} \leq D \leq M \cdot \log N \cdot \varepsilon^{-4}$.We believe that at least $D=\operatorname{polylog}(N)$ might be possible (cf. cc-extractors against quantum side information [23]). However, our proof technique can only yield $D \geq \varepsilon^{-2} \cdot \min \left\{N \cdot 2^{-k-1}, M / 4\right\}$ [12].

Conclusions / Open Problems

- Definition of quantum to classical (qc)-randomness extractors.
- Probabilistic and explicit constructions as well as converse bounds.
- Security in the noisy-storage model linked to the quantum capacity.
- Close relation to entropic uncertainty relations with quantum side information.
- Relation between $q q^{-}$, qc-, and cc-extractors?
- Seed length: $\varepsilon^{-1} \leq D \leq M \cdot \log N \cdot \varepsilon^{-4}$.We believe that at least $D=\operatorname{poly} \log (N)$ might be possible (cf. cc-extractors against quantum side information [23]). However, our proof technique can only yield $D \geq \varepsilon^{-2} \cdot \min \left\{N \cdot 2^{-k-1}, M / 4\right\}$ [I2].
- Bitwise qc-randomness extractor for $\left\{\sigma_{X}, \sigma_{Z}\right\}^{\otimes n}$ (BB84) encoding? Improve bound for $\left\{\sigma_{X}, \sigma_{Y}, \sigma_{Z}\right\}^{\otimes n}$ (six-state) encoding for large n ?

