Security of continuous-variable quantum key distribution against general attacks arXiv: 1208.4920

Anthony Leverrier (ETH Zürich)

with Raúl García-Patrón, Renato Renner and Nicolas J. Cerf

QCRYPT 2012

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Quantum Key Distribution with continuous variables

What's different?

- Alice encodes information on the quadratures (X, P) of the EM field
- Bob measures with an homodyne (interferometric) detection

Grosshans et al., Nature 421 238 (2003)

Features

- no need for single-photon counters
- compatible with WDM
- "Gaussian Quantum Information"

Bing Qi et al. NJP 12 103042 (2010)

C. Weedbrook et al, RMP 84 621 (2012)

Many protocols

Four Gaussian entangled protocols

- Alice prepares *N* EPR pairs $|\Psi\rangle = \sqrt{1 x^2} \sum_{n=0}^{\infty} x^n |n, n\rangle$
- If or each pair, she keeps one mode and sends the other one to Bob
- Alice and Bob perform either homodyne or heterodyne detection
 - homodyne = measuring X OR P
 - heterodyne = measuring X AND P (with higher noise)

Prepare and measure versions

- homodyne meas. for Alice
 ⇔ preparation of a squeezed state
- heterodyne meas. for Alice
 ⇔ preparation of a coherent state

Description of the protocol

• A and B measure ρ_{AB}^n with homodyne/hererodyne detection

- Alice obtains $\mathbf{x} = (x_1, x_2, \cdots x_n) \in \mathbb{R}^n$
- Bob obtins $\mathbf{y} = (y_1, y_2, \cdots, y_n) \in \mathbb{R}^n$
- (Reverse) reconciliation: Bob sends some information to Alice who guesses ŷ
- **Privacy amplification**: Alice and Bob apply some hash function and obtain (*S_A*, *S_B*) plus some transcript *C* of all classical information

QKD protocol: map \mathcal{E}

$$\mathcal{E}: \rho_{AB}^{n} \longmapsto (S_{A}, S_{B}, C)$$

Experimental implementations

in fiber:

Qi *el al, PRA* (2007), Lodewyck *et al, PRA* (2007), Fossier *et al, NJP* (2009), Xuan *et al, Opt Exp* (2009) · · ·

in free space:

S. Tokunaga *et al, CLEO* (2007), D. Elser *et al, NJP* (2010), B. Heim *et al, APL* (2010) · · ·

• with an entangled source T. Eberle *et al, arXiv preprint* (2011), L. Madsen *et al, arXiv preprint* (2011)

Reliable technology

field test during more than 6 months over around 20 km P. Jouguet *et al. Opt Expr* **20** 14030 (2012)

Long distance

Current record: over 80 km!

 \Rightarrow see P. Jouguet's talk on Friday!

What about security?

Security proofs for CV QKD (before 2012)

OK · · · in the asymptotic limit

● de Finetti theorem for infinite-dimensional quantum systems
 ⇒ collective attacks are asymptotically optimal

R.Renner, J.I. Cirac, PRL (2008)

 Gaussian attacks are asymptotically optimal among collective attacks R.García-Patrón, N.J. Cerf *PRL* (2006) M. Navascués, F. Grosshans, A. Acín *PRL* (2006)

Problems

- de Finetti useless in practical settings: convergence is too slow
- parameter estimation is problematic for CVQKD (unbounded variables)

Two solutions

- Entropic uncertainty relation: $H_{\min}^{\epsilon}(X|E) + H_{\max}^{\epsilon}(P|B) \ge N \log \frac{1}{c(\delta)}$ F. Furrer *et al*, *PRL* **109** 100502 (2012) \Rightarrow **see Fabian's talk on Friday!**
- combining the postselection technique (M. Christandl *et al*, *PRL* 2009) with symmetries in phase space ⇒ this talk

Security definition

A protocol \mathcal{E} is secure if it is *undistinguishable from an ideal protocol* $\mathcal{F}: \rho_{AB}^{n} \longmapsto (S, S, C)$:

- \mathcal{F} outputs the same key S for Alice and Bob
- *S* is uniformly distributed over the set of keys and uncorrelated with Eve's quantum state:

$$\rho_{SE} = \frac{1}{2^k} \sum |s_1, \cdots, s_k\rangle \langle s_1, \cdots, s_k| \otimes \rho_E.$$

For instance, $\mathcal{F} = S \circ \mathcal{E}$ where S replaces (S_A, S_B) by a perfect key (S, S).

ϵ -security: $||\mathcal{E} - \mathcal{F}||_{\diamond} \leq \epsilon$

 \Rightarrow the advantage in distinguishing \mathcal{E} from \mathcal{F} is less than ϵ .

$$\||\mathcal{E} - \mathcal{F}||_\diamond := \sup_{
ho_{ABE}} \|(\mathcal{E} - \mathcal{F}) \otimes \operatorname{id}_{\mathcal{K}}(
ho_{ABE})\|_1$$

How to compute the diamond norm?

If the maps are permutation invariant: **postselection technique**

M. Christandl, R. König, R. Renner, PRL 2009

but only for finite dimension

The postselection technique

For protocol invariant under permutations:

Theorem [Christandl et al.]

$$||\mathcal{E}-\mathcal{F}||_{\diamond} \leq (n+1)^{d^2-1}||(\mathcal{E}-\mathcal{F})\otimes \mathrm{id}(au_{\mathcal{HR}})||_1$$

where

•
$$d = \dim(\mathcal{H}_A \otimes \mathcal{H}_B)$$

• $\tau_{\mathcal{HR}}$ is a purification of $\tau_{\mathcal{H}} = \int \sigma_{\mathcal{H}}^{\otimes n} \mu(\sigma_{\mathcal{H}})$

 $||(\mathcal{E} - \mathcal{F}) \otimes id(\tau_{\mathcal{HR}})||_1$ is exponentially small for protocols secure against collective attacks

Security against collective attacks implies security against general attacks if

- the protocol is permutation invariant
- the dimension of $\mathcal{H}_A \otimes \mathcal{H}_B$ is finite

Two ideas

• We prepend *a test* T to the protocol:

- if the test succeeds, Alice and Bob continue with the usual protocol
- otherwise they abort

The goal of the test is to make sure that the state ρ_{AB}^n contains not too many photons, i.e. is close to a finite dimensional state.

The permutation symmetry is not sufficient for the test: we exploit symmetries in phase space specific to CV QKD.

Sketch of the proof

Some notations

- *E*₀ : ρⁿ_{AB} → (S_A, S_B, C): the usual protocol, secure against collective attacks; and *F*₀ := S ∘ E₀ the ideal version
- a test $\mathcal{T}: \rho_{AB}^{N} \mapsto \rho_{AB}^{n} \otimes \{\text{pass/fail}\} \text{ with } N > n$
- a projection $\mathcal{P} : (\mathcal{H}_A \otimes \mathcal{H}_B)^{\otimes n} \to (\overline{\mathcal{H}}_A \otimes \overline{\mathcal{H}}_B)^{\otimes n}$ with

$$\overline{\mathcal{H}}_{\mathcal{A}} := \operatorname{Span}(|0\rangle, \cdots, |d_{\mathcal{A}} - 1\rangle); \dim(\overline{\mathcal{H}}_{\mathcal{A}}) = d_{\mathcal{A}} < \infty$$

$$\overline{\mathcal{H}}_B := \operatorname{Span}(|0\rangle, \cdots, |d_B - 1\rangle); \dim(\overline{\mathcal{H}}_B) = d_B < \infty$$

• the new protocol of interest: $\mathcal{E} := \mathcal{E}_0 \circ \mathcal{T} : \rho_{AB}^N \mapsto (S_A, S_B, C)$

$$\begin{split} ||\mathcal{E} - \mathcal{F}||_{\diamond} &\leq \quad ||\mathcal{E}_{0}\mathcal{P}\mathcal{T} - \mathcal{F}_{0}\mathcal{P}\mathcal{T}||_{\diamond} + ||\mathcal{E} - \mathcal{E}_{0}\mathcal{P}\mathcal{T}||_{\diamond} + ||\mathcal{F} - \mathcal{F}_{0}\mathcal{P}\mathcal{T}||_{\diamond} \\ &= \quad ||\mathcal{E}_{0}\mathcal{P}\mathcal{T} - \mathcal{F}_{0}\mathcal{P}\mathcal{T}||_{\diamond} + ||\mathcal{E}_{0}\circ(\mathrm{id}-\mathcal{P})\circ\mathcal{T}||_{\diamond} + ||\mathcal{F}_{0}\circ(\mathrm{id}-\mathcal{P})\circ\mathcal{T}||_{\diamond} \\ &\leq \quad \underbrace{||\mathcal{E}_{0}\mathcal{P}\mathcal{T} - \mathcal{F}_{0}\mathcal{P}\mathcal{T}||_{\diamond}}_{\text{Postselection technique}} + \underbrace{2||(\mathrm{id}-\mathcal{P})\circ\mathcal{T}||_{\diamond}}_{\text{small for a "good" test}} \end{split}$$

How to choose the test T?

Note: because Eve does not interact with Alice's state, it is sufficient to apply the test on Bob's state ρ_B^N .

Goal: find \mathcal{T} such that $||(id - \mathcal{P}) \circ \mathcal{T}||_{\diamond} \leq \epsilon$, i.e.

Prob ([passing the test] AND
$$\left[\max_{k} m_{k} \geq d_{B}\right] \leq \epsilon$$

where m_k is the result of a photon counting measurement of mode k of ρ_B^n .

Idea: photon counting \approx energy measurement \approx heterodyne detection

T should be easy to implement: one measures m := N - n modes with heterodyne detection:

- results: $\mathbf{z} = (z_1, z_2, \cdots, z_{2m})$
- given z, pass or fail

Permutation symmetry is not sufficient

In fact, even independence is not sufficient. Ex: $\rho^N = \sigma^{\otimes N}$ with $\sigma = (1 - \delta)|0\rangle\langle 0| + \delta|N\rangle\langle N|$. The probability of passing the test is large, but the projection will fail if $\delta = O(1/N)$.

Transformations in phase space

 $\mathcal{U} \cong U(n)$: group generated by phase shifts and beamsplitters \Rightarrow act like orthogonal transformations in phase space.

Action of phase shits and beamsplitters on n modes

There exists $U \in U(n)$: $V = \operatorname{Re}(U)$ and $W = -\operatorname{Im}(U)$

$$\mathbf{a}
ightarrow U\mathbf{a}; \qquad \mathbf{a}^{\dagger}
ightarrow U^* \mathbf{a}^{\dagger}$$

$$\begin{pmatrix} \mathbf{X} \\ \mathbf{P} \end{pmatrix} \rightarrow \begin{pmatrix} V & W \\ -W & V \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{P} \end{pmatrix}$$

 \Rightarrow U commutes with a heterodyne detection

Symmetry in phase space

For any linear passive transformation in phase space U (corresponding to a *network of beamsplitters and phase shifts*), there exists an orthogonal transformation in \mathbb{R}^{2N} such that:

One can assume that

•
$$\rho_{AB}^{N}$$
 is invariant under $U_{A} \otimes U_{B}^{*}$

•
$$U\rho_B^N U^{\dagger} = \rho_B^N \quad \forall U.$$

$$\Rightarrow \rho_B^N = \sum_{k=0} \lambda_k \sigma_k^n$$

$$\sigma_k^n = \frac{1}{\binom{n+k-1}{k}} \sum_{k_1 + \dots + k_N = k} |k_1 \cdots k_N\rangle \langle k_1 \cdots k_N|$$

 ρ_B^N is a mixture of generalized *N*-mode Fock states \Rightarrow very unlikely to pass the test and fail the projection \mathcal{P}

The vector $(\mathbf{X}, \mathbf{P}) \in \mathbb{R}^{2n}$ is uniformly distributed on the sphere of radius $\sqrt{||\mathbf{X}||^2 + ||\mathbf{P}||^2} \Rightarrow$ concentration of measure on the sphere.

The test

Bob computes:

$$Z := y_{2n+1}^2 + y_{2n+2}^2 + \dots + y_{2N}^2$$

- If $Z \leq (N n)Z_{\text{test}}$, Alice and Bob continue
- otherwise, they abort

Concentration of measure:

$$\operatorname{Prob}\left(\left[\operatorname{\mathsf{test}}\,\operatorname{\mathsf{succeeds}}\right] \quad \operatorname{\mathsf{AND}} \quad \left[y_1^2+\dots+y_{2n}^2\geq n\left(Z_{\operatorname{\mathsf{test}}}+\delta\right)\right]\right)\leq \epsilon$$

The test

Bob computes:

$$Z := y_{2n+1}^2 + y_{2n+2}^2 + \dots + y_{2N}^2$$

- If $Z \leq (N n)Z_{\text{test}}$, Alice and Bob continue
- otherwise, they abort

Concentration of measure:

$$\operatorname{Prob}\left(\left[\operatorname{\mathsf{test}}\,\operatorname{\mathsf{succeeds}}\right] \quad \operatorname{\mathsf{AND}} \quad \left[y_1^2+\dots+y_{2n}^2\geq n\left(Z_{\operatorname{\mathsf{test}}}+\delta\right)\right]\right)\leq \epsilon$$

Sketch of the proof

- Prob ([pass test] AND $\sum_{i=1}^{n} X_i^2 + P_i^2 \ge C_1 n$) $\le \epsilon_{\text{test}}$
- Prob ([pass test] AND $\sum_{i=1}^{n} \hat{n}_i \ge C_2 n$) $\le \epsilon_{\text{test}}$
- Prob ([pass test] AND max $\hat{n}_i \ge C_3 \log \frac{n}{\epsilon_{\text{test}}} \right) \le \epsilon_{\text{test}}$

for some explicit constants C_1, C_2, C_3

Putting all together

• choose
$$d_A, d_B = O\left(\log \frac{n}{\epsilon_{\text{test}}}\right)$$

 postselection technique: if *ε*₀ is *ε*₀-secure against collective attacks, then *ε* is *ε*-secure against general attacks with

$$\epsilon = \epsilon_0 2^{O(\log^4(n/\epsilon_{\text{test}}))} + 2\epsilon_{\text{test}}.$$

ok because one can take $\epsilon_0 = 2^{-cn}$.

Summary

We show that *collective attacks are optimal* for Gaussian protocols thanks to two ideas

- prepending an test to the usual protocol to truncate the Hilbert space
- permutation symmetry is not sufficient to prove security: one needs rotation invariance in phase space

Open questions

Our proof is somewhat suboptimal: first, we truncate, then we use the finite-dimensional postselection technique

- Can we generalize the technique for maps which are symmetric in phase space?
- Same question for de Finetti theorem (only partial results are known)