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3. Constructive approach to cryptography

(joint work with Renato Renner)
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A−−−→B (insecure) channel from A to B
A−−−→•B secret channel from A to B
A •−−−→B authentic channel from A to B
A •−−−→•B secure channel from A to B (secret and authentic)

A •==• B secret key shared by A and B
A ==• B one-sided key: A knows that at most B knows

the key, but B does not know who holds the key.
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The •-calculus (for channels and keys)

Calculus
• for the design and analysis of cryptographic protocols
• cryptographic scheme = security transformation
• precise semantics (later)
• security proof by composition

Illustrates:
• the relevant properties of various cryptographic systems
• limitations of cryptography
• role of protocols such as public-key certification
• role of trust
• necessary and sufficient conditions for key management

in distributed systems
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Key transport in •-calculus

A •−−−→•B
KT−→ A •==• B

A−−−→•B
KT−→ A ==• B

Attention: A •−−−→ B
KT−→/ A •== B
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Adversary

BA

channel

Impersonation attack: The adversary sends a fraudulent
message before observing the real message.

Success probability: PI

Note: PI ≥ |M|/|C|.

Substitution attack: The adversary sends a fraudulent
message after observing a correctly auth. message.

Success probability: PS
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Q: Is a lower cheating probability possible?

Q: What about longer messages?
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Theorem: For every authentication system we have

PI ≥ 2−I(C;K)

PS ≥ 2−H(K|C)

PI · PS ≥ 2−H(K)

max(PI, PS) ≥ 2−H(K)/2 = 2−k/2

I(C;K) = H(K)−H(K|C)

s = − log2 (max(PI, PS)) ≤ k/2

k ≥ 2s
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because pm(R)− pm′ has at most b− 1 roots.

Theorem: If used recursively, then t = 2s+O(1).

Theorem: Combine with key-based scheme: k ≈ 2s
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A1: Constructive cryptography

A2: Abstraction
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Formally: set of objects Ω, metric
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Definition: A construction is composable if

R
α,ε−→ S ∧ S

β′,ε′−→ T ⇒ R
α◦β,ε+ε′−→ T
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A dilemma in computer science

“Theorem” means theorem !!!

⇒ One must precisely define computation,
efficiency, infeasibility, non-negligible,
security, ....

⇒ Turing machines, communication tapes,
asymptotics, polynomial-time, ...

⇒ enormous complexity, imprecise papers, ...

Proposed paradigm shift in Computer Science:

Top-down abstraction
instead of

bottom-up definitions

Goals of abstraction:

• eliminate irrelevant details, minimality
• simpler definitions
• generality of results
• simpler proofs, elegance
• didactic suitability, better understanding
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Levels of abstraction

# level concepts treated at this level

0. Constructions composability, construction trees

1. Abstract systems composability proof

2. Discrete systems I/O bahavior, indistinguish. proofs

3. System implem. complexity, efficiency, asymptotics

Abstraction levels in algebra:

1. Abstract group: 〈G, ?, e, (·)−1〉

2. Instantiations: Integers, real number, elliptic curves

3. Representations: e.g. projective coordinates for ECs
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One-time pad:
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C , C  , ...1ciphertext

1 2

key
21 key

21

2

2

addition modulo 2

M  , M  , ... M  , M  , ...
plaintext plaintext

K , K , ... K , K , ...

Security [SHANNON]: I(C,M) = 0 (perfect secrecy)
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Draws on work by [Goldreich-Micali-Wigderson85],

[Canetti01], [Pfitzmann-Waidner], [M.-Schmid96], ...
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tKA PD, ε,−→ KEY
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Theorem: ε ≥ f( H(KEY) − I(X;Y|Z))
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[AUT,AUT’]
tDifHelt−→ KEY

[KEY,AUT”]
tSYMt−→ SEC


⇒

[[AUT,AUT’],AUT”]
tDifHel◦SYMt−→ SEC

[AUT,QC]
tQKD◦OTPt−→ SEC

Attention: Quantum Key Distribution, though
proven secure, did not compose
before 2005 [KRBM07,Renner05]

[KEY, IC,QC]
ITA◦QKD◦ITA◦OTP−→ SEC ??
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d(γiR,γiS) ≤ d(R,S)
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Definition: A construction is composable if

R α−→ S ∧ S
β−→ T ⇒ R

α◦β−→ T

Generalizations of the ABE-setting:

• n 6=3 parties

• any party can be dishonest
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