
Authentication
and more ...

Ueli Maurer

ETH Zurich

QCRYPT 2012, Singapore

Authentication
and more ...

Ueli Maurer

ETH Zurich

QCRYPT 2012, Singapore

Three goals of this talk

1. Role of authentication in QKD

Three goals of this talk

1. Role of authentication in QKD

2. Information-theoretically secure authentication

Three goals of this talk

1. Role of authentication in QKD

2. Information-theoretically secure authentication

3. Constructive approach to cryptography

Three goals of this talk

1. Role of authentication in QKD

2. Information-theoretically secure authentication

3. Constructive approach to cryptography

(joint work with Renato Renner)

Security types – a classification

protocol resourcesBC

BC

BQ

UQ

UC

UC BQ UQ

adversary resources

BC = bounded classical

UC = unbounded classical

BQ = bounded quantum

UQ = unbounded quantum

Security types – a classification

protocol resourcesBC

BC

BQ

UQ

UC

UC BQ UQ

adversary resources

BC = bounded classical

UC = unbounded classical

BQ = bounded quantum

UQ = unbounded quantum

Security types – a classification

protocol resourcesBC

BC

BQ

UQ

UC

UC BQ UQ

adversary resources

BC = bounded classical

UC = unbounded classical

BQ = bounded quantum

UQ = unbounded quantum

crypto.
conv.

Security types – a classification

protocol resourcesBC

BC

BQ

UQ

UC

UC BQ UQ

adversary resources

BC = bounded classical

UC = unbounded classical

BQ = bounded quantum

UQ = unbounded quantum
cryptography

information−th.

crypto.
conv.

Security types – a classification

protocol resourcesBC

BC

BQ

UQ

UC

UC BQ UQ

adversary resources

BC = bounded classical

UC = unbounded classical

BQ = bounded quantum

UQ = unbounded quantum

QC

cryptography

information−th.

crypto.
conv.

Security types – a classification

protocol resourcesBC

BC

BQ

UQ

UC

UC BQ UQ

adversary resources

BC = bounded classical

UC = unbounded classical

BQ = bounded quantum

UQ = unbounded quantum

RSA

QC

cryptography

information−th.

crypto.
conv.

Security types – a classification

protocol resourcesBC

BC

BQ

UQ

UC

UC BQ UQ

adversary resources

BC = bounded classical

UC = unbounded classical

BQ = bounded quantum

UQ = unbounded quantum

PQC

QC

cryptography

information−th.

crypto.
conv.

Security types – a classification

protocol resourcesBC

BC

BQ

UQ

UC

UC BQ UQ

adversary resources

BC = bounded classical

UC = unbounded classical

BQ = bounded quantum

UQ = unbounded quantum

PQC

QC

cryptography

information−th.

crypto.
conv.

Secrecy and authenticity

Secrecy and authenticity

BA

channel

Secrecy and authenticity

input output

BA

channel

Secrecy and authenticity

input output

Adversary

BA

channel

Secrecy and authenticity

input output

Adversary

BA

channel

Secrecy and authenticity

input output

Adversary

BA

channel

Secrecy and authenticity

input output

Adversary

BA

channel

Two basic independent / dual security properties:
• secrecy
• authenticity

Secrecy and authenticity

input output

Adversary

BA

channel

Two basic independent / dual security properties:
• secrecy (output is exclusive)
• authenticity

Secrecy and authenticity

input output

Adversary

BA

channel

Two basic independent / dual security properties:
• secrecy (output is exclusive)
• authenticity

Secrecy and authenticity

input output

Adversary

BA

channel

Two basic independent / dual security properties:
• secrecy (output is exclusive)
• authenticity (input is exclusive)

Secrecy and authenticity

input output

Adversary

BA

channel

Two basic independent / dual security properties:
• secrecy (output is exclusive)
• authenticity (input is exclusive)

Secrecy and authenticity

input output

Adversary

BA

channel

Two basic independent / dual security properties:
• secrecy (output is exclusive)
• authenticity (input is exclusive)

Secrecy and authenticity

input output

Adversary

BA

channel

A−−−→B (insecure) channel from A to B
A−−−→•B secret channel from A to B
A •−−−→B authentic channel from A to B
A •−−−→•B secure channel from A to B (secret and authentic)

Secrecy and authenticity

input output

Adversary

BA

channel

A−−−→B (insecure) channel from A to B
A−−−→•B secret channel from A to B
A •−−−→B authentic channel from A to B
A •−−−→•B secure channel from A to B (secret and authentic)

A •==• B secret key shared by A and B
A ==• B one-sided key: A knows that at most B knows

the key, but B does not know who holds the key.

The •-calculus (for channels and keys)

Calculus
• for the design and analysis of cryptographic protocols
• cryptographic scheme = security transformation
• precise semantics (later)
• security proof by composition

The •-calculus (for channels and keys)

Calculus
• for the design and analysis of cryptographic protocols
• cryptographic scheme = security transformation
• precise semantics (later)
• security proof by composition

Illustrates:
• the relevant properties of various cryptographic systems
• limitations of cryptography
• role of protocols such as public-key certification
• role of trust
• necessary and sufficient conditions for key management

in distributed systems

Key transport in •-calculus

A •−−−→•B
KT−→ A •==• B

Key transport in •-calculus

A •−−−→•B
KT−→ A •==• B

A−−−→•B
KT−→ A ==• B

Key transport in •-calculus

A •−−−→•B
KT−→ A •==• B

A−−−→•B
KT−→ A ==• B

Attention: A •−−−→ B
KT−→/ A •== B

Symmetric cryptosystem

secure channel

Alice Bob

plaintext

ciphertext

plaintext

secret keysecret key K K

adversary

encryption decryption
M M

C

Symmetric cryptosystem in •-calculus

A ==• B
A−−−→ B

 SYM−→ A−−−→•B

Symmetric cryptosystem in •-calculus

A ==• B
A−−−→ B

 SYM−→ A−−−→•B

A ==• B
A •−−−→ B

 SYM−→ A •−−−→•B

Message authentication in •-calculus

A •== B
A−−−→ B

 MAC−→ A •−−−→ B

Message authentication in •-calculus

A •== B
A−−−→ B

 MAC−→ A •−−−→ B

A •== B
A−−−→•B

 MAC−→ A •−−−→•B

Message authentication in •-calculus

A •== B
A−−−→ B

 MAC−→ A •−−−→ B

A •== B
A−−−→•B

 MAC−→ A •−−−→•B

Note: Conservation law of •-calculus.

Combining Encryption and MAC

Goal: A •==• B
A−−−→ B

 ???−→ A •−−−→•B

Combining Encryption and MAC

Goal: A •==• B
A−−−→ B

 ???−→ A •−−−→•B

Key expansion:
A •==• B

PRG−→
 A •==• B
A •==• B

Combining Encryption and MAC

Goal: A •==• B
A−−−→ B

 ???−→ A •−−−→•B

Key expansion:
A •==• B

PRG−→
 A •==• B
A •==• B

Encrypt-then-MAC:
A •== B
A−−−→ B

 MAC−→ A •−−−→ B

A ==• B
A •−−−→ B

 SYM−→ A •−−−→•B

Combining Encryption and MAC

Goal: A •==• B
A−−−→ B

 ???−→ A •−−−→•B

Key expansion:
A •==• B

PRG−→
 A •==• B
A •==• B

Encrypt-then-MAC:
A •== B
A−−−→ B

 MAC−→ A •−−−→ B

A ==• B
A •−−−→ B

 SYM−→ A •−−−→•B

MAC-then-encrypt:
A ==• B
A−−−→ B

 SYM−→ A−−−→•B

A •== B
A−−−→•B

 MAC−→ A •−−−→•B

Combining Encryption and MAC

Goal: A •==• B
A−−−→ B

 ???−→ A •−−−→•B

Key expansion:
A •==• B

PRG−→
 A •==• B
A •==• B

Encrypt-then-MAC:
A •== B
A−−−→ B

 MAC−→ A •−−−→ B

A ==• B
A •−−−→ B

 SYM−→ A •−−−→•B

MAC-then-encrypt:
A ==• B
A−−−→ B

 SYM−→ A−−−→•B

A •== B
A−−−→•B

 MAC−→ A •−−−→•B

Applies to computational and inform.-th. security.

Combining Encryption and MAC

Goal: A •==• B
A−−−→ B

 ???−→ A •−−−→•B

Key expansion:
A •==• B

PRG−→
 A •==• B
A •==• B

Encrypt-then-MAC:
A •== B
A−−−→ B

 MAC−→ A •−−−→ B

A ==• B
A •−−−→ B

 SYM−→ A •−−−→•B

MAC-then-encrypt:
A ==• B
A−−−→ B

 SYM−→ A−−−→•B

A •== B
A−−−→•B

 MAC−→ A •−−−→•B

Applies to computational and inform.-th. security.

Public-key cryptosystem

p
B

key
generator

public key

adversary

plaintext m

Bob

secret key

c

p’

s
B

encryption decryption

p
B

B

plaintext m

Alice

ciphertext c

Public-key cryptosystem in •-calculus

A •−−−→ B
A←−−−B

 PKC−→ A •←−−−B

Public-key cryptosystem in •-calculus

A •−−−→ B
A←−−−B

 PKC−→ A •←−−−B

A •−−−→ B
A←−−−•B

 PKC−→ A •←−−−•B

Key agreement in •-calculus

A •−−−→ B
A←−−−•B

 KA−→ A •==• B

Key agreement in •-calculus

A •−−−→ B
A←−−−•B

 KA−→ A •==• B

A •−−−→ B
A←−−−•B
A−Q→ B

QKD−→ A •==• B

Key agreement in •-calculus

A •−−−→ B
A←−−−•B

 KA−→ A •==• B

A •−−−→ B
A←−−−•B
A−Q→ B

QKD−→ A •==• B

Note: Conservation law of •-calculus.

Key agreement in •-calculus

A •−−−→ B
A←−−−•B

 KA−→ A •==• B

A •−−−→ B
A←−−−•B
A−Q→ B

QKD−→ A •==• B

A−−−→ B
A←−−−•B

 KA−→ A ==• B

Note: Conservation law of •-calculus.

Digital signature scheme in •-calculus

A •−−−→ B
A−−−→ B

 DSS−→ A •−−−→ B

Information-theoretic authentication

Information-theoretic authentication

input output

Adversary

BA

channel

Information-theoretic authentication

input output

Adversary

BA

channel

Impersonation attack: The adversary sends a fraudulent
message before observing the real message.

Success probability: PI

Information-theoretic authentication

input output

Adversary

BA

channel

Impersonation attack: The adversary sends a fraudulent
message before observing the real message.

Success probability: PI

Note: PI ≥ |M|/|C|.

Information-theoretic authentication

input output

Adversary

BA

channel

Impersonation attack: The adversary sends a fraudulent
message before observing the real message.

Success probability: PI

Note: PI ≥ |M|/|C|.

Substitution attack: The adversary sends a fraudulent
message after observing a correctly auth. message.

Success probability: PS

Authenticating an `-bit message with a k-bit key

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Authenticating an `-bit message with a k-bit key

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Example 1: M ∈ {0,1}, C = M ||K

Authenticating an `-bit message with a k-bit key

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Example 1: M ∈ {0,1}, C = M ||K PI = 2−k, PS = 1

Authenticating an `-bit message with a k-bit key

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Example 1: M ∈ {0,1}, C = M ||K PI = 2−k, PS = 1

Example 2: M ∈ {0,1}
K = K1||K0 with K0,K1 ∈ {0,1}k/2

C =

 0||K0 if M = 0
1||K1 if M = 1

Authenticating an `-bit message with a k-bit key

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Example 1: M ∈ {0,1}, C = M ||K PI = 2−k, PS = 1

Example 2: M ∈ {0,1}
K = K1||K0 with K0,K1 ∈ {0,1}k/2

C =

 0||K0 if M = 0
1||K1 if M = 1

PI = 2−k/2, PS = 2−k/2

Authenticating an `-bit message with a k-bit key

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Example 1: M ∈ {0,1}, C = M ||K PI = 2−k, PS = 1

Example 2: M ∈ {0,1,2}
K = K1||K0 with K0,K1 ∈ {0,1}k/2

C =

0||K0 if M = 0
1||K1 if M = 1
2||K0 ⊕K1 if M = 2

PI = 2−k/2, PS = 2−k/2

Authenticating an `-bit message with a k-bit key

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Example 1: M ∈ {0,1}, C = M ||K PI = 2−k, PS = 1

Example 2: M ∈ {0,1,2}
K = K1||K0 with K0,K1 ∈ {0,1}k/2

C =

0||K0 if M = 0
1||K1 if M = 1
2||K0 ⊕K1 if M = 2

PI = 2−k/2, PS = 2−k/2

Example 3: M ∈ GF (2k/2), C = M ·K1 +K0

Authenticating an `-bit message with a k-bit key

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Example 1: M ∈ {0,1}, C = M ||K PI = 2−k, PS = 1

Example 2: M ∈ {0,1,2}
K = K1||K0 with K0,K1 ∈ {0,1}k/2

C =

0||K0 if M = 0
1||K1 if M = 1
2||K0 ⊕K1 if M = 2

PI = 2−k/2, PS = 2−k/2

Example 3: M ∈ GF (2k/2), C = M ·K1 +K0

Q: Is a lower cheating probability possible?

Authenticating an `-bit message with a k-bit key

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Example 1: M ∈ {0,1}, C = M ||K PI = 2−k, PS = 1

Example 2: M ∈ {0,1,2}
K = K1||K0 with K0,K1 ∈ {0,1}k/2

C =

0||K0 if M = 0
1||K1 if M = 1
2||K0 ⊕K1 if M = 2

PI = 2−k/2, PS = 2−k/2

Example 3: M ∈ GF (2k/2), C = M ·K1 +K0

Q: Is a lower cheating probability possible?

Q: What about longer messages?

Lower bounds on the cheating probability

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Lower bounds on the cheating probability

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Theorem: For every authentication system we have

PI ≥ 2−I(C;K)

Lower bounds on the cheating probability

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Theorem: For every authentication system we have

PI ≥ 2−I(C;K)

PS ≥ 2−H(K|C)

Lower bounds on the cheating probability

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Theorem: For every authentication system we have

PI ≥ 2−I(C;K)

PS ≥ 2−H(K|C)

I(C;K) = H(K)−H(K|C)

Lower bounds on the cheating probability

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Theorem: For every authentication system we have

PI ≥ 2−I(C;K)

PS ≥ 2−H(K|C)

PI · PS ≥ 2−H(K)

I(C;K) = H(K)−H(K|C)

Lower bounds on the cheating probability

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Theorem: For every authentication system we have

PI ≥ 2−I(C;K)

PS ≥ 2−H(K|C)

PI · PS ≥ 2−H(K)

max(PI, PS) ≥ 2−H(K)/2 = 2−k/2

I(C;K) = H(K)−H(K|C)

Lower bounds on the cheating probability

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Theorem: For every authentication system we have

PI ≥ 2−I(C;K)

PS ≥ 2−H(K|C)

PI · PS ≥ 2−H(K)

max(PI, PS) ≥ 2−H(K)/2 = 2−k/2

I(C;K) = H(K)−H(K|C)

s = − log2 (max(PI, PS)) ≤ k/2

Lower bounds on the cheating probability

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Theorem: For every authentication system we have

PI ≥ 2−I(C;K)

PS ≥ 2−H(K|C)

PI · PS ≥ 2−H(K)

max(PI, PS) ≥ 2−H(K)/2 = 2−k/2

I(C;K) = H(K)−H(K|C)

s = − log2 (max(PI, PS)) ≤ k/2

k ≥ 2s

Authenticating an `-bit message with a k-bit key

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Authenticating an `-bit message with a k-bit key

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Block length n, field F = GF (2n),
m = [mb−1, . . . ,m1,m0], ` = bn

K = K1||K0, k = 2n

Authenticating an `-bit message with a k-bit key

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Block length n, field F = GF (2n),
m = [mb−1, . . . ,m1,m0], ` = bn

K = K1||K0, k = 2n

Message polynomials:

pm(x) = mb−1x
b−1 + · · ·m1x+m0

qm(x) = x · pm(x) = mb−1x
b + · · ·m1x

2 +m0x

Authenticating an `-bit message with a k-bit key

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Block length n, field F = GF (2n),
m = [mb−1, . . . ,m1,m0], ` = bn

K = K1||K0, k = 2n

Authentication scheme (ITA): C = M || qM(K1) +K0

Message polynomials:

pm(x) = mb−1x
b−1 + · · ·m1x+m0

qm(x) = x · pm(x) = mb−1x
b + · · ·m1x

2 +m0x

Authenticating an `-bit message with a k-bit key

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Block length n, field F = GF (2n),
m = [mb−1, . . . ,m1,m0], ` = bn

K = K1||K0, k = 2n

Authentication scheme (ITA): C = M || qM(K1) +K0

Theorem: PI = PS = b · 2−n; s = k
2 − log(2`/k)

Message polynomials:

pm(x) = mb−1x
b−1 + · · ·m1x+m0

qm(x) = x · pm(x) = mb−1x
b + · · ·m1x

2 +m0x

Authenticating an `-bit message with a k-bit key

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Block length n, field F = GF (2n),
m = [mb−1, . . . ,m1,m0], ` = bn

K = K1||K0, k = 2n

Authentication scheme (ITA): C = M || qM(K1) +K0

Theorem: PI = PS = b · 2−n; s = k
2 − log(2`/k)

Message polynomials:

pm(x) = mb−1x
b−1 + · · ·m1x+m0

qm(x) = x · pm(x) = mb−1x
b + · · ·m1x

2 +m0x

Q: Trade-off between `, k, s ?

Authenticating an `-bit message with a k-bit key

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Block length n, field F = GF (2n),
m = [mb−1, . . . ,m1,m0], ` = bn

K = K1||K0, k = 2n

Authentication scheme (ITA): C = M || qM(K1) +K0

Theorem: PI = PS = b · 2−n; s = k
2 − log(2`/k)

Message polynomials:

pm(x) = mb−1x
b−1 + · · ·m1x+m0

qm(x) = x · pm(x) = mb−1x
b + · · ·m1x

2 +m0x

Q: Trade-off between `, k, s ?

This is essentially optimal!

Authenticating an `-bit message with a k-bit key

A
k•==• B

A
`−−−→ B

ITA−→ A • `−−−→B

Block length n, field F = GF (2n),
m = [mb−1, . . . ,m1,m0], ` = bn

K = K1||K0, k = 2n

Authentication scheme (ITA): C = M || qM(K1) +K0

Theorem: PI = PS = b · 2−n; s = k
2 − log(2`/k)

Message polynomials:

pm(x) = mb−1x
b−1 + · · ·m1x+m0

qm(x) = x · pm(x) = mb−1x
b + · · ·m1x

2 +m0x

Q: Trade-off between `, k, s ?

This is essentially optimal!

Q: Can we nevertheless do better?

Authenticating an `-bit message by auth. t bits

A
`−−−→B

A • t−−−→B

A-Ampl−→ A • `−−−→B

Authenticating an `-bit message by auth. t bits

A
`−−−→B

A • t−−−→B

A-Ampl−→ A • `−−−→B

Message poly.: pm(x) = mb−1x
b−1 + · · ·m1x+m0

Authenticating an `-bit message by auth. t bits

A
`−−−→B

A • t−−−→B

A-Ampl−→ A • `−−−→B

Protocol (A-Ampl): Send m over A `−−−→B, then R||pm(R)

over A • t−−−→B, for a random R.

Message poly.: pm(x) = mb−1x
b−1 + · · ·m1x+m0

Authenticating an `-bit message by auth. t bits

A
`−−−→B

A • t−−−→B

A-Ampl−→ A • `−−−→B

Protocol (A-Ampl): Send m over A `−−−→B, then R||pm(R)

over A • t−−−→B, for a random R.

Theorem: PI = PS = (b− 1) · 2−n; s = n− log(b− 1)

Message poly.: pm(x) = mb−1x
b−1 + · · ·m1x+m0

Authenticating an `-bit message by auth. t bits

A
`−−−→B

A • t−−−→B

A-Ampl−→ A • `−−−→B

Protocol (A-Ampl): Send m over A `−−−→B, then R||pm(R)

over A • t−−−→B, for a random R.

Theorem: PI = PS = (b− 1) · 2−n; s = n− log(b− 1)

Proof: For any m,m′, P (pm(R) = pm′(R)) ≤ (b− 1)/|F |
because pm(R)− pm′ has at most b− 1 roots.

Message poly.: pm(x) = mb−1x
b−1 + · · ·m1x+m0

Authenticating an `-bit message by auth. t bits

A
`−−−→B

A • t−−−→B

A-Ampl−→ A • `−−−→B

Protocol (A-Ampl): Send m over A `−−−→B, then R||pm(R)

over A • t−−−→B, for a random R.

Theorem: PI = PS = (b− 1) · 2−n; s = n− log(b− 1)

Proof: For any m,m′, P (pm(R) = pm′(R)) ≤ (b− 1)/|F |
because pm(R)− pm′ has at most b− 1 roots.

Theorem: If used recursively, then t = 2s+O(1).

Message poly.: pm(x) = mb−1x
b−1 + · · ·m1x+m0

Authenticating an `-bit message by auth. t bits

A
`−−−→B

A • t−−−→B

A-Ampl−→ A • `−−−→B

Protocol (A-Ampl): Send m over A `−−−→B, then R||pm(R)

over A • t−−−→B, for a random R.

Theorem: PI = PS = (b− 1) · 2−n; s = n− log(b− 1)

Proof: For any m,m′, P (pm(R) = pm′(R)) ≤ (b− 1)/|F |
because pm(R)− pm′ has at most b− 1 roots.

Theorem: If used recursively, then t = 2s+O(1).

Theorem: Combine with key-based scheme: k ≈ 2s

Message poly.: pm(x) = mb−1x
b−1 + · · ·m1x+m0

Authenticating an `-bit message by auth. t bits

A
`−−−→B

A • t−−−→B

A-Ampl−→ A • `−−−→B

Protocol (A-Ampl): Send m over A `−−−→B, then R||pm(R)

over A • t−−−→B, for a random R.

Theorem: PI = PS = (b− 1) · 2−n; s = n− log(b− 1)

Proof: For any m,m′, P (pm(R) = pm′(R)) ≤ (b− 1)/|F |
because pm(R)− pm′ has at most b− 1 roots.

Theorem: If used recursively, then t = 2s+O(1).

Theorem: Combine with key-based scheme: k ≈ 2s

Message poly.: pm(x) = mb−1x
b−1 + · · ·m1x+m0

Optimal!

Authenticating an `-bit message by auth. t bits

A
`−−−→B

A • t−−−→B

A-Ampl−→ A • `−−−→B

Protocol (A-Ampl): Send m over A `−−−→B, then R||pm(R)

over A • t−−−→B, for a random R.

Theorem: PI = PS = (b− 1) · 2−n; s = n− log(b− 1)

Proof: For any m,m′, P (pm(R) = pm′(R)) ≤ (b− 1)/|F |
because pm(R)− pm′ has at most b− 1 roots.

Theorem: If used recursively, then t = 2s+O(1).

Theorem: Combine with key-based scheme: k ≈ 2s

Message poly.: pm(x) = mb−1x
b−1 + · · ·m1x+m0

Optimal!

Q: What does all of this really mean?

Authenticating an `-bit message by auth. t bits

A
`−−−→B

A • t−−−→B

A-Ampl−→ A • `−−−→B

Protocol (A-Ampl): Send m over A `−−−→B, then R||pm(R)

over A • t−−−→B, for a random R.

Theorem: PI = PS = (b− 1) · 2−n; s = n− log(b− 1)

Proof: For any m,m′, P (pm(R) = pm′(R)) ≤ (b− 1)/|F |
because pm(R)− pm′ has at most b− 1 roots.

Theorem: If used recursively, then t = 2s+O(1).

Theorem: Combine with key-based scheme: k ≈ 2s

Message poly.: pm(x) = mb−1x
b−1 + · · ·m1x+m0

Optimal!

Q: What does all of this really mean? (e.g. for QKD?)

Security definitions in classical cryptography

Security definitions in classical cryptography

Definition: A public-key cryptosystem (PKC) is a triple of
polynomial-time algorithms (PPT) with security parameter k:

1. KeyGen: input: k; output: a secret key s, a public key p.
2. Enc: input: k, message m, p; output: ciphertext c.
3. Dec: input: k, c, s; output: message m.

Security definitions in classical cryptography

Definition: A public-key cryptosystem (PKC) is a triple of
polynomial-time algorithms (PPT) with security parameter k:

1. KeyGen: input: k; output: a secret key s, a public key p.
2. Enc: input: k, message m, p; output: ciphertext c.
3. Dec: input: k, c, s; output: message m.

Correctness: Dec(k,Enc(k,m, p), s) = m.

Security definitions in classical cryptography

Definition: A public-key cryptosystem (PKC) is a triple of
polynomial-time algorithms (PPT) with security parameter k:

1. KeyGen: input: k; output: a secret key s, a public key p.
2. Enc: input: k, message m, p; output: ciphertext c.
3. Dec: input: k, c, s; output: message m.

Correctness: Dec(k,Enc(k,m, p), s) = m.

Security: A PKC is IND-CPA secure if no probabilistic
polynomial time-bounded adversary A can win the following
game with probability non-negligibly greater than 1/2:

1. p is generated with KeyGen, and given to A.
2. A generates two equal-length messages m0 and m1.
3. A random bit b is chosen, and A gets c = Enc(k,mb, p).
4. A guesses the bit b.

Security definitions in classical cryptography

Definition: A public-key cryptosystem (PKC) is a triple of
polynomial-time algorithms (PPT) with security parameter k:

1. KeyGen: input: k; output: a secret key s, a public key p.
2. Enc: input: k, message m, p; output: ciphertext c.
3. Dec: input: k, c, s; output: message m.

Correctness: Dec(k,Enc(k,m, p), s) = m.

Security: A PKC is IND-CPA secure if no probabilistic
polynomial time-bounded adversary A can win the following
game with probability non-negligibly greater than 1/2:

1. p is generated with KeyGen, and given to A.
2. A generates two equal-length messages m0 and m1.
3. A random bit b is chosen, and A gets c = Enc(k,mb, p).
4. A guesses the bit b.

Security definitions in classical cryptography

Definition: A public-key cryptosystem (PKC) is a triple of
polynomial-time algorithms (PPT) with security parameter k:

1. KeyGen: input: k; output: a secret key s, a public key p.
2. Enc: input: k, message m, p; output: ciphertext c.
3. Dec: input: k, c, s; output: message m.

Correctness: Dec(k,Enc(k,m, p), s) = m.

Security: A PKC is IND-CPA secure if no probabilistic
polynomial time-bounded adversary A can win the following
game with probability non-negligibly greater than 1/2:

1. p is generated with KeyGen, and given to A.
2. A generates two equal-length messages m0 and m1.
3. A random bit b is chosen, and A gets c = Enc(k,mb, p).
4. A guesses the bit b.

Two questions that arise:

Q1: What does the definition really mean?

Security definitions in classical cryptography

Definition: A public-key cryptosystem (PKC) is a triple of
polynomial-time algorithms (PPT) with security parameter k:

1. KeyGen: input: k; output: a secret key s, a public key p.
2. Enc: input: k, message m, p; output: ciphertext c.
3. Dec: input: k, c, s; output: message m.

Correctness: Dec(k,Enc(k,m, p), s) = m.

Security: A PKC is IND-CPA secure if no probabilistic
polynomial time-bounded adversary A can win the following
game with probability non-negligibly greater than 1/2:

1. p is generated with KeyGen, and given to A.
2. A generates two equal-length messages m0 and m1.
3. A random bit b is chosen, and A gets c = Enc(k,mb, p).
4. A guesses the bit b.

Two questions that arise:

Q1: What does the definition really mean?

Where can we use an IND-CPA secure PKC?

Security definitions in classical cryptography

Definition: A public-key cryptosystem (PKC) is a triple of
polynomial-time algorithms (PPT) with security parameter k:

1. KeyGen: input: k; output: a secret key s, a public key p.
2. Enc: input: k, message m, p; output: ciphertext c.
3. Dec: input: k, c, s; output: message m.

Correctness: Dec(k,Enc(k,m, p), s) = m.

Security: A PKC is IND-CPA secure if no probabilistic
polynomial time-bounded adversary A can win the following
game with probability non-negligibly greater than 1/2:

1. p is generated with KeyGen, and given to A.
2. A generates two equal-length messages m0 and m1.
3. A random bit b is chosen, and A gets c = Enc(k,mb, p).
4. A guesses the bit b.

Two questions that arise:

Q1: What does the definition really mean?

Where can we use an IND-CPA secure PKC?

Which is the right definition for a given application?

Security definitions in classical cryptography

Definition: A public-key cryptosystem (PKC) is a triple of
polynomial-time algorithms (PPT) with security parameter k:

1. KeyGen: input: k; output: a secret key s, a public key p.
2. Enc: input: k, message m, p; output: ciphertext c.
3. Dec: input: k, c, s; output: message m.

Correctness: Dec(k,Enc(k,m, p), s) = m.

Security: A PKC is IND-CPA secure if no probabilistic
polynomial time-bounded adversary A can win the following
game with probability non-negligibly greater than 1/2:

1. p is generated with KeyGen, and given to A.
2. A generates two equal-length messages m0 and m1.
3. A random bit b is chosen, and A gets c = Enc(k,mb, p).
4. A guesses the bit b.

Two questions that arise:

Q1: What does the definition really mean?

Where can we use an IND-CPA secure PKC?

Which is the right definition for a given application?

Q2: Are artefacts like Turing machines, asymptotics,
poly-time, negligibility, etc. really needed?

Security definitions in classical cryptography

Definition: A public-key cryptosystem (PKC) is a triple of
polynomial-time algorithms (PPT) with security parameter k:

1. KeyGen: input: k; output: a secret key s, a public key p.
2. Enc: input: k, message m, p; output: ciphertext c.
3. Dec: input: k, c, s; output: message m.

Correctness: Dec(k,Enc(k,m, p), s) = m.

Security: A PKC is IND-CPA secure if no probabilistic
polynomial time-bounded adversary A can win the following
game with probability non-negligibly greater than 1/2:

1. p is generated with KeyGen, and given to A.
2. A generates two equal-length messages m0 and m1.
3. A random bit b is chosen, and A gets c = Enc(k,mb, p).
4. A guesses the bit b.

Two questions that arise:

Q1: What does the definition really mean?

Where can we use an IND-CPA secure PKC?

Which is the right definition for a given application?

Q2: Are artefacts like Turing machines, asymptotics,
poly-time, negligibility, etc. really needed?

A1: Constructive cryptography

Security definitions in classical cryptography

Definition: A public-key cryptosystem (PKC) is a triple of
polynomial-time algorithms (PPT) with security parameter k:

1. KeyGen: input: k; output: a secret key s, a public key p.
2. Enc: input: k, message m, p; output: ciphertext c.
3. Dec: input: k, c, s; output: message m.

Correctness: Dec(k,Enc(k,m, p), s) = m.

Security: A PKC is IND-CPA secure if no probabilistic
polynomial time-bounded adversary A can win the following
game with probability non-negligibly greater than 1/2:

1. p is generated with KeyGen, and given to A.
2. A generates two equal-length messages m0 and m1.
3. A random bit b is chosen, and A gets c = Enc(k,mb, p).
4. A guesses the bit b.

Two questions that arise:

Q1: What does the definition really mean?

Where can we use an IND-CPA secure PKC?

Which is the right definition for a given application?

Q2: Are artefacts like Turing machines, asymptotics,
poly-time, negligibility, etc. really needed?

A1: Constructive cryptography

A2: Abstraction

Shannon’s channel coding theorem

Shannon’s channel coding theorem

0 0

1 1

n−bit noisy channel

δ
δ

Shannon’s channel coding theorem

cod

encoding

0 0

1 1

n−bit noisy channel

δ
δ

Shannon’s channel coding theorem

dec

decoding

cod

encoding

0 0

1 1

n−bit noisy channel

δ
δ

Shannon’s channel coding theorem

0 0

1 1

k−bit error−free channel

dec

decoding

cod

encoding

0 0

1 1

n−bit noisy channel

δ
δ

Shannon’s channel coding theorem

0 0

1 1

k−bit error−free channel

dec

decoding

cod

encoding

0 0

1 1

n−bit noisy channel

≈δ
δ

Shannon’s channel coding theorem

metric ?

0 0

1 1

k−bit error−free channel

dec

decoding

cod

encoding

0 0

1 1

n−bit noisy channel

≈δ
δ

Shannon’s channel coding theorem

metric ?

0 0

1 1

k−bit error−free channel

dec

decoding

cod

encoding

0 0

1 1

n−bit noisy channel

≈δ
δ

cod BSCnδ dec ≈ BSCk0

Shannon’s channel coding theorem

metric ?

0 0

1 1

k−bit error−free channel

dec

decoding

cod

encoding

0 0

1 1

n−bit noisy channel

≈δ
δ

cod BSCnδ dec ≈ BSCk0

SR ≈π2π1

Shannon’s channel coding theorem

metric ?

0 0

1 1

k−bit error−free channel

dec

decoding

cod

encoding

0 0

1 1

n−bit noisy channel

≈δ
δ

cod BSCnδ dec ≈ BSCk0

SR ≈π2π1

π1 R π2 ≈ S

Shannon’s channel coding theorem

metric ?

0 0

1 1

k−bit error−free channel

dec

decoding

cod

encoding

0 0

1 1

n−bit noisy channel

≈δ
δ

cod BSCnδ dec ≈ BSCk0

SR ≈π2π1

π1 R π2 ≈ S ⇐⇒: R
(π1, π2)−→ Sπ1 R π2 ≈ S

Shannon’s channel coding theorem

metric ?

0 0

1 1

k−bit error−free channel

dec

decoding

cod

encoding

0 0

1 1

n−bit noisy channel

≈δ
δ

cod BSCnδ dec ≈ BSCk0

SR ≈π2π1

π1 R π2 ≈ S ⇐⇒: R
(π1, π2)−→ Sπ1 R π2 ≈ S ⇐⇒: R
(π1, π2)−→ S

Shannon’s channel coding theorem

metric ?

0 0

1 1

k−bit error−free channel

dec

decoding

cod

encoding

0 0

1 1

n−bit noisy channel

≈δ
δ

cod BSCnδ dec ≈ BSCk0

SR ≈π2π1

π1 R π2 ≈ S ⇐⇒: R
(π1, π2)−→ S

Construction:

π1 R π2 ≈ S ⇐⇒: R
(π1, π2)−→ S

Shannon’s channel coding theorem

metric ?

0 0

1 1

k−bit error−free channel

dec

decoding

cod

encoding

0 0

1 1

n−bit noisy channel

≈δ
δ

cod BSCnδ dec ≈ BSCk0

SR ≈π2π1

π1 R π2 ≈ S ⇐⇒: R
(π1, π2)−→ S

Construction:

π1 R π2 ≈ε S ⇐⇒: R
(π1, π2),ε−→ S

Shannon’s channel coding theorem

metric ?

0 0

1 1

k−bit error−free channel

dec

decoding

cod

encoding

0 0

1 1

n−bit noisy channel

≈δ
δ

cod BSCnδ dec ≈ BSCk0

SR ≈π2π1

π1 R π2 ≈ S ⇐⇒: R
(π1, π2)−→ S

Construction:

π1 R π2 ≈ε S ⇐⇒: R
(π1, π2),ε−→ S

BSCnδ
(cod,dec),ε−→ BSCk0

Shannon’s channel coding theorem

metric ?

0 0

1 1

k−bit error−free channel

dec

decoding

cod

encoding

0 0

1 1

n−bit noisy channel

≈δ
δ

cod BSCnδ dec ≈ BSCk0

SR ≈π2π1

π1 R π2 ≈ S ⇐⇒: R
(π1, π2)−→ S

Construction:

π1 R π2 ≈ε S ⇐⇒: R
(π1, π2),ε−→ S

1. Construction paradigm

Shannon’s channel coding theorem

metric ?

0 0

1 1

k−bit error−free channel

dec

decoding

cod

encoding

0 0

1 1

n−bit noisy channel

≈δ
δ

cod BSCnδ dec ≈ BSCk0

SR ≈π2π1

π1 R π2 ≈ S ⇐⇒: R
(π1, π2)−→ S

Construction:

π1 R π2 ≈ε S ⇐⇒: R
(π1, π2),ε−→ S

1. Construction paradigm
2. Abstract system algebra

Shannon’s channel coding theorem

metric ?

0 0

1 1

k−bit error−free channel

dec

decoding

cod

encoding

0 0

1 1

n−bit noisy channel

≈δ
δ

cod BSCnδ dec ≈ BSCk0

SR ≈π2π1

π1 R π2 ≈ S ⇐⇒: R
(π1, π2)−→ S

Construction:

π1 R π2 ≈ε S ⇐⇒: R
(π1, π2),ε−→ S

1. Construction paradigm
2. Abstract system algebra

3. Constructive cryptography

Shannon’s channel coding theorem

metric ?

0 0

1 1

k−bit error−free channel

dec

decoding

cod

encoding

0 0

1 1

n−bit noisy channel

≈δ
δ

cod BSCnδ dec ≈ BSCk0

SR ≈π2π1

π1 R π2 ≈ S ⇐⇒: R
(π1, π2)−→ S

Construction:

π1 R π2 ≈ε S ⇐⇒: R
(π1, π2),ε−→ S

1. Construction paradigm
2. Abstract system algebra

3. Constructive cryptography

4. Discrete systems, metric

Shannon’s channel coding theorem

metric ?

0 0

1 1

k−bit error−free channel

dec

decoding

cod

encoding

0 0

1 1

n−bit noisy channel

≈δ
δ

cod BSCnδ dec ≈ BSCk0

SR ≈π2π1

π1 R π2 ≈ S ⇐⇒: R
(π1, π2)−→ S

Construction:

π1 R π2 ≈ε S ⇐⇒: R
(π1, π2),ε−→ S

1. Construction paradigm

The construction paradigm

The construction paradigm

R α−→ S

Construct an object S from another object R
via construction α.

The construction paradigm

R α−→ S

Construct an object S from another object R
via construction α.

Examples:

BSCnδ
(cod,dec),ε−→ BSCk0

The construction paradigm

R α−→ S

Construct an object S from another object R
via construction α.

Examples:

A (k,m)-pseudo-random generator (PRG)
constructs a uniform m-bit string from a
uniform k-bit string:

Uk
PRG−→ Um

The construction paradigm

R α−→ S

Construct an object S from another object R
via construction α.

Examples:

A key agreement protocol (KAP) constructs a
shared secret n-bit key from ???:

??? KAP−→ KEYn

The construction paradigm

R α−→ S

Construct an object S from another object R
via construction α.

Examples:

A complexity-theoretic reduction constructs an
efficient algorithm for problem P from an
efficient algorithm for problem Q.

The construction paradigm

R α−→ S

Construct an object S from another object R
via construction α.

Formally: set of objects Ω,
constructor set 〈Γ, ◦, id〉,
construction ⊆ Ω× Γ×Ω

The construction paradigm

R α−→ S

Construct an object S from another object R
via construction α.

Formally: set of objects Ω,
constructor set 〈Γ, ◦, id〉,
construction ⊆ Ω× Γ×Ω

Definition: A construction is composable if

R α−→ S ∧ S
β′−→ T ⇒ R

α◦β−→ T

The construction paradigm

R α−→ S

Construct an object S from another object R
via construction α.

Formally: set of objects Ω, metric
constructor set 〈Γ, ◦, id〉,
construction ⊆ Ω× Γ×Ω

Definition: A construction is composable if

R
α,ε−→ S ∧ S

β′,ε′−→ T ⇒ R
α◦β,ε+ε′−→ T

Shannon’s channel coding theorem

metric ?

0 0

1 1

k−bit error−free channel

dec

decoding

cod

encoding

0 0

1 1

n−bit noisy channel

≈δ
δ

cod BSCnδ dec ≈ BSCk0

SR ≈π2π1

π1 R π2 ≈ S ⇐⇒: R
(π1, π2)−→ S

Construction:

π1 R π2 ≈ε S ⇐⇒: R
(π1, π2),ε−→ S

2. Abstract system algebra

A dilemma in computer science

A dilemma in computer science

“Theorem” means theorem !!!

A dilemma in computer science

“Theorem” means theorem !!!

⇒ One must precisely define computation,
efficiency, infeasibility, non-negligible,
security,

A dilemma in computer science

“Theorem” means theorem !!!

⇒ One must precisely define computation,
efficiency, infeasibility, non-negligible,
security,

⇒ Turing machines, communication tapes,
asymptotics, polynomial-time, ...

A dilemma in computer science

“Theorem” means theorem !!!

⇒ One must precisely define computation,
efficiency, infeasibility, non-negligible,
security,

⇒ Turing machines, communication tapes,
asymptotics, polynomial-time, ...

⇒ enormous complexity, imprecise papers, ...

A dilemma in computer science

“Theorem” means theorem !!!

⇒ One must precisely define computation,
efficiency, infeasibility, non-negligible,
security,

⇒ Turing machines, communication tapes,
asymptotics, polynomial-time, ...

⇒ enormous complexity, imprecise papers, ...

Proposed paradigm shift in Computer Science:

Top-down abstraction
instead of

bottom-up definitions

A dilemma in computer science

“Theorem” means theorem !!!

⇒ One must precisely define computation,
efficiency, infeasibility, non-negligible,
security,

⇒ Turing machines, communication tapes,
asymptotics, polynomial-time, ...

⇒ enormous complexity, imprecise papers, ...

Proposed paradigm shift in Computer Science:

Top-down abstraction
instead of

bottom-up definitions

Goals of abstraction:

• eliminate irrelevant details, minimality
• simpler definitions
• generality of results
• simpler proofs, elegance
• didactic suitability, better understanding

Abstract system algebra 〈Φ,Σ〉 [M-Renner11]

Abstract system algebra 〈Φ,Σ〉 [M-Renner11]

Resource set Φ for interface set I (e.g. I = {1,2,3,4})
Converter set Σ

R
2

3

4

1 γ

β

α

Algebraic laws:

• R||S ∈Φ notation: [R,S]

• αiR ∈Φ for all R ∈Φ, α ∈Σ, i ∈ I
• αiβjR = βjαiR for all i 6= j

• 1iR = R for all i

Abstract system algebra 〈Φ,Σ〉 [M-Renner11]

Resource set Φ for interface set I (e.g. I = {1,2,3,4})
Converter set Σ

R
2

3

4

1 γ

β

α

Algebraic laws:

• R||S ∈Φ notation: [R,S]

• αiR ∈Φ for all R ∈Φ, α ∈Σ, i ∈ I
• αiβjR = βjαiR for all i 6= j

• 1iR = R for all i

Pseudo-metric d on Φ:

Def.: d is non-expanding⇐⇒ d(αiR,αiS) ≤ d(R,S)

Abstract system algebra 〈Φ,Σ〉 [M-Renner11]

Resource set Φ for interface set I (e.g. I = {1,2,3,4})
Converter set Σ

R
2

3

4

1
S

2

3

4

1

Algebraic laws:

• R||S ∈Φ notation: [R,S]

• αiR ∈Φ for all R ∈Φ, α ∈Σ, i ∈ I
• αiβjR = βjαiR for all i 6= j

• 1iR = R for all i

Pseudo-metric d on Φ:

Def.: d is non-expanding⇐⇒ d(αiR,αiS) ≤ d(R,S)

Abstract system algebra 〈Φ,Σ〉 [M-Renner11]

Resource set Φ for interface set I (e.g. I = {1,2,3,4})
Converter set Σ

R
2

3

4

1α S
2

3

4

1α

Algebraic laws:

• R||S ∈Φ notation: [R,S]

• αiR ∈Φ for all R ∈Φ, α ∈Σ, i ∈ I
• αiβjR = βjαiR for all i 6= j

• 1iR = R for all i

Pseudo-metric d on Φ:

Def.: d is non-expanding⇐⇒ d(αiR,αiS) ≤ d(R,S)

Levels of abstraction

level concepts treated at this level

0. Constructions composability, construction trees

1. Abstract systems composability proof

2. Discrete systems I/O bahavior, indistinguish. proofs

3. System implem. complexity, efficiency, asymptotics

Levels of abstraction

level concepts treated at this level

0. Constructions composability, construction trees

1. Abstract systems composability proof

2. Discrete systems I/O bahavior, indistinguish. proofs

3. System implem. complexity, efficiency, asymptotics

R
2

3

4

1 γ

β

α

Levels of abstraction

level concepts treated at this level

0. Constructions composability, construction trees

1. Abstract systems composability proof

2. Discrete systems I/O bahavior, indistinguish. proofs

3. System implem. complexity, efficiency, asymptotics

dec

decoding

cod

encoding

0 0

1 1

n−bit noisy channel

δ
δ

Levels of abstraction

level concepts treated at this level

0. Constructions composability, construction trees

1. Abstract systems composability proof

2. Discrete systems I/O bahavior, indistinguish. proofs

3. System implem. complexity, efficiency, asymptotics

system ENCRYPT

read x at outside interface
read k at inside interface
c ← enc(x, k)

.....

Levels of abstraction

level concepts treated at this level

0. Constructions composability, construction trees

1. Abstract systems composability proof

2. Discrete systems I/O bahavior, indistinguish. proofs

3. System implem. complexity, efficiency, asymptotics

Abstraction levels in algebra:

1. Abstract group: 〈G, ?, e, (·)−1〉

2. Instantiations: Integers, real number, elliptic curves

3. Representations: e.g. projective coordinates for ECs

Constructive cryptography

Constructive cryptography

One-time pad:

1

C , C , ...1ciphertext

1 2

key
21 key

21

2

2

addition modulo 2

M , M , ... M , M , ...
plaintext plaintext

K , K , ... K , K , ...

Constructive cryptography

One-time pad:

1

C , C , ...1ciphertext

1 2

key
21 key

21

2

2

addition modulo 2

M , M , ... M , M , ...
plaintext plaintext

K , K , ... K , K , ...

Security ?

Constructive cryptography

One-time pad:

1

C , C , ...1ciphertext

1 2

key
21 key

21

2

2

addition modulo 2

M , M , ... M , M , ...
plaintext plaintext

K , K , ... K , K , ...

Security [SHANNON]: I(C,M) = 0 (perfect secrecy)

One-time pad in constructive cryptography

One-time pad in constructive cryptography

A B

E

AUT

A

E

B

$
KEY

One-time pad in constructive cryptography

otp−enc

A B

E

AUT

A

E

B

$
KEY

One-time pad in constructive cryptography

otp−decotp−enc

A B

E

AUT

A

E

B

$
KEY

One-time pad in constructive cryptography

BA

ESEC

otp−decotp−enc

A B

E

AUT

A

E

B

$
KEY

One-time pad in constructive cryptography

$

sim

BA

ESEC

otp−decotp−enc

A B

E

AUT

A

E

B

$
KEY

One-time pad in constructive cryptography

$

sim

BA

ESEC

otp−decotp−enc

A B

E

AUT

A

E

B

$
KEY

One-time pad in constructive cryptography

|.|

$

sim

BA

ESEC

otp−decotp−enc

A B

E

AUT

A

E

B

$
KEY

One-time pad in constructive cryptography

|.|

$

sim

BA

ESEC

otp−decotp−enc

A B

E

AUT

A

E

B

$
KEY

otp-decB otp-encA [KEY,AUT] ≡ simE SEC

One-time pad in constructive cryptography

|.|

$

sim

BA

ESEC

otp−decotp−enc

A B

E

AUT

A

E

B

$
KEY

otp-decB otp-encA [KEY,AUT] ≡ simE SEC

as a construction: [KEY,AUT]
OTP−→ SEC

One-time pad in constructive cryptography

|.|

$

sim

BA

ESEC

otp−decotp−enc

A B

E

AUT

A

E

B

$
KEY

otp-decB otp-encA [KEY,AUT] ≡ simE SEC

as a construction: [KEY,AUT]
OTP−→ SEC

Draws on work by [Goldreich-Micali-Wigderson85],

[Canetti01], [Pfitzmann-Waidner], [M.-Schmid96], ...

One-time pad in constructive cryptography

|.|

$

sim

BA

ESEC

otp−decotp−enc

A B

E

AUT

A

E

B

$
KEY

otp-decB otp-encA [KEY,AUT] ≡ simE SEC

as a construction: [KEY,AUT]
OTP−→ SEC

Encryption in constructive cryptography

|.|

$

sim

SEC

A B

E

dec

D

enc

E
A B

E

AUT

A

E

B

$
KEY

decB encA [KEY,AUT] ≈ simE SEC

as a construction: [KEY,AUT]
tSYMt−→ SEC

Encryption in constructive cryptography

|.|

$

sim

SEC

A B

E

dec

D

enc

E
A B

E

AUT

A

E

B

$
KEY

decB encA [KEY,AUT] ≈ simE SEC

as a construction: [KEY,AUT]
tSYMt−→ SEC

metric?

Encryption in constructive cryptography

|.|

$

sim

SEC

A B

E

dec

D

enc

E
A B

E

AUT

A

E

B

$
KEY

decB encA [KEY,AUT] ≈ simE SEC

as a construction: [KEY,AUT]
tSYMt−→ SEC

R
(π1,π2)−→ S :⇔ ∃σ : π1

A π2
B R ≈ σE S

Encryption in constructive cryptography

|.|

$

sim

SEC

A B

E

dec

D

enc

E
A B

E

AUT

A

E

B

$
KEY

decB encA [KEY,AUT] ≈ simE SEC

as a construction: [KEY,AUT]
tSYMt−→ SEC

R
(π1,π2)−→ S :⇔ ∃σ : π1

A π2
B R ≈ σE S

SR ≈
σ

E

BAπ2π1

E

BA

Encryption in constructive cryptography

|.|

$

sim

SEC

A B

E

dec

D

enc

E
A B

E

AUT

A

E

B

$
KEY

decB encA [KEY,AUT] ≈ simE SEC

as a construction: [KEY,AUT]
tSYMt−→ SEC

R
(π1,π2)−→ S :⇔ ∃σ : π1

A π2
B R ≈ σE S

and

π1
A π2

B ⊥E R ≈ ⊥E S

Encryption in constructive cryptography

|.|

$

sim

SEC

A B

E

dec

D

enc

E
A B

E

AUT

A

E

B

$
KEY

decB encA [KEY,AUT] ≈ simE SEC

as a construction: [KEY,AUT]
tSYMt−→ SEC

R
(π1,π2)−→ S :⇔ ∃σ : π1

A π2
B R ≈ σE S

and

π1
A π2

B ⊥E R ≈ ⊥E S

SR ≈
E

BAπ2π1

E

BA

Encryption in constructive cryptography

|.|

$

sim

SEC

A B

E

dec

D

enc

E
A B

E

AUT

A

E

B

$
KEY

decB encA [KEY,AUT] ≈ simE SEC

as a construction: [KEY,AUT]
tSYMt−→ SEC

R
(π1,π2)−→ S :⇔ ∃σ : π1

A π2
B R ≈ σE S

and

π1
A π2

B ⊥E R ≈ ⊥E S

Encryption in constructive cryptography

.
?A

E

B

$
KEY

Encryption in constructive cryptography

.

?

?
A B

E

AUT

A

E

B

$
KEY

Key agreement in CC

.

A B

E

AUT

A B

E

AUT

Key agreement in CC

.

A B

E

AUT

A B

E

AUT

E

$
KEY

BA

Key agreement in CC

.

$

sim

kap_Bkap_A

A B

E

AUT

A B

E

AUT

E

$
KEY

BA

Key agreement in CC

.

$

sim

kap_Bkap_A

A B

E

AUT

A B

E

AUT

E

$
KEY

BA

[AUT,AUT’]
tDifHelt−→ KEY

Key agreement in CC (i.t. security)

.

$

sim

kap_Bkap_A

A B

E

AUT

A B

E

AUT

E

$
KEY

BA

Key agreement in CC (i.t. security)

.

$

sim

kap_Bkap_A

A B

E

AUT

A B

E

AUT

A B

E

AUX

XYZP

E

$
KEY

BA

[AUT,AUT’,PXYZ]
tKA PD,−→ KEY

Key agreement in CC (i.t. security)

.

$

sim

kap_Bkap_A

A B

E

AUT

A B

E

AUT

A B

E

AUX

XYZP

E

$
KEY

BA

[AUT,AUT’,PXYZ]
tKA PD, ε,−→ KEY

Key agreement in CC (i.t. security)

.

$

sim

kap_Bkap_A

A B

E

AUT

A B

E

AUT

A B

E

AUX

XYZP

E

$
KEY

BA

[AUT,AUT’,PXYZ]
tKA PD, ε,−→ KEY

Theorem: H(KEY) ≤ min(I(X;Y), I(X;Y|Z)) if ε= 0.

Key agreement in CC (i.t. security)

.

$

sim

kap_Bkap_A

A B

E

AUT

A B

E

AUT

A B

E

AUX

XYZP

E

$
KEY

BA

[AUT,AUT’,PXYZ]
tKA PD, ε,−→ KEY

Theorem: H(KEY) ≤ min(I(X;Y), I(X;Y|Z)) if ε= 0.

Theorem: ε ≥ f(H(KEY) − I(X;Y|Z))

Composition: an example

Composition: an example

[AUT,AUT’]
tDifHelt−→ KEY

[KEY,AUT”]
tSYMt−→ SEC

⇒

[[AUT,AUT’],AUT”]
tDifHel◦SYMt−→ SEC

Composition: an example

[AUT,AUT’]
tDifHelt−→ KEY

[KEY,AUT”]
tSYMt−→ SEC

⇒

[[AUT,AUT’],AUT”]
tDifHel◦SYMt−→ SEC

[AUT,QC]
tQKD◦OTPt−→ SEC

Composition: an example

[AUT,AUT’]
tDifHelt−→ KEY

[KEY,AUT”]
tSYMt−→ SEC

⇒

[[AUT,AUT’],AUT”]
tDifHel◦SYMt−→ SEC

[AUT,QC]
tQKD◦OTPt−→ SEC

Attention: Quantum Key Distribution, though
proven secure, did not compose
before 2005 [KRBM07,Renner05]

Composition: an example

[AUT,AUT’]
tDifHelt−→ KEY

[KEY,AUT”]
tSYMt−→ SEC

⇒

[[AUT,AUT’],AUT”]
tDifHel◦SYMt−→ SEC

[AUT,QC]
tQKD◦OTPt−→ SEC

Attention: Quantum Key Distribution, though
proven secure, did not compose
before 2005 [KRBM07,Renner05]

[KEY, IC,QC]
ITA◦QKD◦ITA◦OTP−→ SEC ??

Proof of composition (for ABE-setting)

SR ≈
σ

E

BAπ2π1

E

BA

Proof of composition (for ABE-setting)

SR ≈
σ

E

BAπ2π1

E

BA

Definition: A construction is composable if

R α−→ S ∧ S
β−→ T ⇒ R

α◦β−→ T

Proof of composition (for ABE-setting)

TS

SR

≈

≈

σ′

B

E

Aπ′
2π′

1
E

BA

σ

E

BAπ2π1

E

BA

Definition: A construction is composable if

R α−→ S ∧ S
β−→ T ⇒ R

α◦β−→ T

Proof of composition (for ABE-setting)

TS

SR

≈

≈

σ′

B

E

Aπ′
2π′

1
E

BA

σ

π′
1

E

BAπ′
1 π2π1

E

BA

Definition: A construction is composable if

R α−→ S ∧ S
β−→ T ⇒ R

α◦β−→ T

Proof of composition (for ABE-setting)

TS

SR

≈

≈

σ′

B

E

Aπ′
2π′

1
E

BA

σ

π′
1

E

BAπ′
1 π2π1

E

BA

Definition: A construction is composable if

R α−→ S ∧ S
β−→ T ⇒ R

α◦β−→ T

Pseudo-metric d on Φ is non-expanding if
d(γiR,γiS) ≤ d(R,S)

Proof of composition (for ABE-setting)

TS

SR

≈

≈

σ′

B

E

Aπ′
2π′

1
E

BA

σ

π′
1

E

BAπ′
1 π2π1

E

BA

Definition: A construction is composable if

R α−→ S ∧ S
β−→ T ⇒ R

α◦β−→ T

Proof of composition (for ABE-setting)

TS

SR

≈

≈

σ′

B

E

Aπ′
2π′

1
E

BA

σ

π′
2π′

1
E

BAπ′
2π′

1 π2π1

E

BA

Definition: A construction is composable if

R α−→ S ∧ S
β−→ T ⇒ R

α◦β−→ T

Proof of composition (for ABE-setting)

TS

SR

≈

≈

σ

σ′

B

E

A

σ

π′
2π′

1
E

BA

σ

π′
2π′

1
E

BAπ′
2π′

1 π2π1

E

BA

Definition: A construction is composable if

R α−→ S ∧ S
β−→ T ⇒ R

α◦β−→ T

Proof of composition (for ABE-setting)

TS

SR

≈

≈

σ

σ′

B

E

A

σ

π′
2π′

1
E

BA

σ

π′
2π′

1
E

BAπ′
2π′

1 π2π1

E

BA

Definition: A construction is composable if

R α−→ S ∧ S
β−→ T ⇒ R

α◦β−→ T

Proof of composition (for ABE-setting)

TS

SR

≈

≈

σ

σ′

B

E

A

σ

π′
2π′

1
E

BA

σ

π′
2π′

1
E

BAπ′
2π′

1 π2π1

E

BA

Definition: A construction is composable if

R α−→ S ∧ S
β−→ T ⇒ R

α◦β−→ T

Generalizations of the ABE-setting:

• n 6=3 parties

• any party can be dishonest

Thank you!
U. Maurer, Authentication Theory and Hypothesis Testing, IEEE
Trans. on Information Theory, 2005,

U. Maurer and R. Renner, Abstract Cryptography, Second Symposium
in Innovations in Computer Science, ICS 2011,

U. Maurer, Constructive cryptography – A new paradigm for security
definitions and proofs, Theory of Security and Applications (TOSCA
2011).

