Authentication

Ueli Maurer

ETH Zurich

QCRYPT 2012, Singapore

Authentication

 and more ...

 and more ...}

Ueli Maurer

ETH Zurich

QCRYPT 2012, Singapore

Three goals of this talk

1. Role of authentication in QKD

Three goals of this talk

1. Role of authentication in QKD
2. Information-theoretically secure authentication

Three goals of this talk

1. Role of authentication in QKD
2. Information-theoretically secure authentication
3. Constructive approach to cryptography

Three goals of this talk

1. Role of authentication in QKD
2. Information-theoretically secure authentication
3. Constructive approach to cryptography
(joint work with Renato Renner)

Security types - a classification

adversary resources

Secrecy and authenticity

Secrecy and authenticity

Secrecy and authenticity

Secrecy and authenticity

Adversary

Secrecy and authenticity

Secrecy and authenticity

Secrecy and authenticity

Two basic independent / dual security properties:

- secrecy
- authenticity

Secrecy and authenticity

Adversary
Two basic independent / dual security properties:

- secrecy (output is exclusive)
- authenticity

Secrecy and authenticity

Adversary
Two basic independent / dual security properties:

- secrecy (output is exclusive)
- authenticity

Secrecy and authenticity

Two basic independent / dual security properties:

- secrecy (output is exclusive)
- authenticity (input is exclusive)

Secrecy and authenticity

Two basic independent / dual security properties:

- secrecy (output is exclusive)
- authenticity (input is exclusive)

Secrecy and authenticity

Adversary

Two basic independent / dual security properties:

- secrecy (output is exclusive)
- authenticity (input is exclusive)

Secrecy and authenticity

Adversary

$A \longrightarrow B$
$A \longrightarrow B$
$A \bullet B$
$A \bullet \bullet B$
(insecure) channel from A to B
secret channel from A to B
authentic channel from A to B
secure channel from A to B (secret and authentic)

Secrecy and authenticity

Adversary

$A \longrightarrow B$
$A \longrightarrow B$
$A \bullet B$
$A \bullet B$
$A \Longleftrightarrow B$
$A \Longrightarrow B$ the key, but B does not know who holds the key.

The e-calculus (for channels and keys)

Calculus

- for the design and analysis of cryptographic protocols
- cryptographic scheme = security transformation
- precise semantics (later)
- security proof by composition

The e-calculus (for channels and keys)

Calculus

- for the design and analysis of cryptographic protocols
- cryptographic scheme = security transformation
- precise semantics (later)
- security proof by composition

Illustrates:

- the relevant properties of various cryptographic systems
- limitations of cryptography
- role of protocols such as public-key certification
- role of trust
- necessary and sufficient conditions for key management in distributed systems

Key transport in e-calculus

$$
A \bullet B \quad \xrightarrow{\mathrm{KT}} \quad A \Longleftrightarrow B
$$

Key transport in e-calculus

$$
\begin{aligned}
A \longmapsto B & \xrightarrow{\mathrm{KT}} \quad A \longmapsto B \\
A \longrightarrow B & \xrightarrow{\mathrm{KT}} \quad A \rightleftharpoons B
\end{aligned}
$$

Key transport in e-calculus

$$
\begin{aligned}
A \bullet B & \xrightarrow{\mathrm{KT}} \quad A \longmapsto B \\
A \longrightarrow B & \xrightarrow{\mathrm{KT}} \quad A \rightleftharpoons B
\end{aligned}
$$

Attention:
$A \bullet B$
$\xrightarrow{\mathrm{KT}}$
$A \Longleftarrow B$

Symmetric cryptosystem

Symmetric cryptosystem in e-calculus

$$
\left.\begin{array}{c}
A \longrightarrow B \\
A \longrightarrow B
\end{array}\right\} \quad \stackrel{\mathrm{SYM}}{\longrightarrow} \quad A \longrightarrow B
$$

Symmetric cryptosystem in e-calculus

$$
\left.\begin{array}{c}
A \longrightarrow B \\
A \longrightarrow B
\end{array}\right\} \quad \stackrel{\text { SYM }}{\longrightarrow} \quad A \longrightarrow B
$$

$$
\left.\begin{array}{cc}
A \longrightarrow & B \\
A \bullet & \longrightarrow
\end{array}\right\} \quad \xrightarrow{\mathrm{SYM}} \quad A \bullet B
$$

Message authentication in e-calculus

$$
\left.\begin{array}{c}
A \longmapsto B \\
A \longrightarrow B
\end{array}\right\} \quad \xrightarrow{\text { MAC }} \quad A \longmapsto B
$$

Message authentication in e-calculus

$$
\left.\begin{array}{c}
A \longmapsto B \\
A \longrightarrow B
\end{array}\right\} \quad \xrightarrow{\text { MAC }} \quad A \bullet B
$$

$$
\left.\begin{array}{c}
A \longmapsto B \\
A \longrightarrow B
\end{array}\right\} \quad \xrightarrow{\text { MAC }} \quad A \bullet \bullet B
$$

Message authentication in e-calculus

$$
\begin{aligned}
& \left.\begin{array}{c}
A \longmapsto B \\
A \longrightarrow B
\end{array}\right\} \quad \xrightarrow{\text { MAC }} \quad A \bullet B \\
& \left.\begin{array}{c}
A \longmapsto B \\
A \longrightarrow
\end{array}\right\} \quad \xrightarrow{\text { MAC }} \quad A \bullet B
\end{aligned}
$$

Combining Encryption and MAC

Goal: $\left.\begin{array}{cc}A & A \longrightarrow B\end{array}\right\} \quad \xrightarrow{? ? ?} \quad A \bullet B$

Combining Encryption and MAC

Goal: $\left.\begin{array}{rl}A & \longrightarrow B \\ A & \longrightarrow\end{array}\right\} \quad \xrightarrow{? ? ?} \quad A \bullet B$
Key expansion:

$$
A \Longleftarrow B
$$

$$
\xrightarrow{\mathrm{PRG}} \quad\left\{\begin{array}{l}
A \\
A \\
A
\end{array}\right.
$$

Combining Encryption and MAC

Goal:

$$
\left.\begin{array}{c}
A \Longleftrightarrow B \\
A \longmapsto B
\end{array}\right\}
$$

$$
\xrightarrow{? ? ?} \quad A \bullet \longrightarrow B
$$

Key expansion:

$$
A \Longleftrightarrow B \quad \xrightarrow{\text { PRG }} \quad\left\{\begin{array}{l}
A \Longleftrightarrow B \\
A \Longleftrightarrow
\end{array}\right.
$$

Encrypt-then-MAC:

$$
\begin{array}{ll}
\left.\begin{array}{c}
A \longmapsto B \\
A \longrightarrow B
\end{array}\right\} & \xrightarrow{\text { MAC }} \\
\left.\begin{array}{c}
A \longrightarrow B \\
A \longmapsto B
\end{array}\right\} & A \bullet B
\end{array}
$$

Combining Encryption and MAC

Goal:

$$
\left.\begin{array}{c}
A \Longleftrightarrow B \\
A \longrightarrow B
\end{array}\right\}
$$

$$
\xrightarrow{? ? ?}
$$

$$
\xrightarrow{\mathrm{PRG}}
$$

$$
\left\{\begin{array}{l}
A \Longleftrightarrow B \\
A \Longleftrightarrow B
\end{array}\right.
$$

Encrypt-then-MAC:

MAC-then-encrypt:

$$
\begin{aligned}
& \left.\begin{array}{c}
A \longrightarrow B \\
A \longrightarrow B
\end{array}\right\} \quad \xrightarrow{\text { SYM }} \quad A \longrightarrow B \\
& \left.\begin{array}{c}
A \rightleftharpoons B \\
A \longrightarrow B
\end{array}\right\} \quad \xrightarrow{\text { MAC }} \quad A \bullet B
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{c}
A \longmapsto B \\
A \longrightarrow B
\end{array}\right\} \quad \xrightarrow{\text { MAC }} \quad A \bullet B \\
& \left.\begin{array}{ll}
A & \longrightarrow \\
A & B
\end{array}\right\}
\end{aligned}
$$

Combining Encryption and MAC

Goal:

$$
\left.\begin{array}{c}
A \longmapsto B \\
A \longrightarrow B
\end{array}\right\} \quad \xrightarrow{? ? ?} \quad A \bullet B
$$

Key expansion:

$$
A \Longleftarrow B \quad \xrightarrow{:} \quad\left\{\begin{array}{l}
A \Longleftrightarrow \\
A \Longleftrightarrow B
\end{array}\right.
$$

Encrypt-then-MAC:

$$
A=B\} \quad \xrightarrow{\text { MAC }} \quad A \bullet B
$$

Applies to computational and inform.-th. security.

$$
A \bullet B\} \quad \subset \quad A \bullet B
$$

MAC-then-encrypt:

$$
\begin{aligned}
& \left.\begin{array}{c}
A \longrightarrow B \\
A \longrightarrow B
\end{array}\right\} \quad \xrightarrow{\text { SYM }} \quad A \longrightarrow B \\
& \left.\begin{array}{c}
A \rightleftharpoons B \\
A \longrightarrow B
\end{array}\right\} \quad \xrightarrow{\text { MAC }} \quad A \bullet B
\end{aligned}
$$

Combining Encryption and MAC

Goal:

$$
\left.\begin{array}{c}
A \Longleftrightarrow B \\
A \longrightarrow B
\end{array}\right\} \quad \xrightarrow{? ? ?} \quad A \bullet \bullet B
$$

Key expansion:

$$
A \Longleftrightarrow B \quad \xrightarrow{\text { PRG }} \quad\left\{\begin{array}{lll}
A \Longleftrightarrow B \\
A & \Longleftrightarrow & B
\end{array}\right.
$$

Encrypt-then-MAC:

Applies to computational and inform.-th. security.

$$
A \bullet B\} \quad \subset \quad A \bullet B
$$

MAC-then-encrypt:

$$
\begin{array}{lll}
\left.\begin{array}{c}
A \longrightarrow B \\
A \longrightarrow B
\end{array}\right\} & \xrightarrow{\mathrm{SYM}} & A \longrightarrow B \\
\left.\begin{array}{c}
A \longmapsto B \\
A \longrightarrow
\end{array}\right\} & \xrightarrow{\longrightarrow} \mathrm{MAC} & A \longmapsto B
\end{array}
$$

Public-key cryptosystem

Public-key cryptosystem in e-calculus

Public-key cryptosystem in e-calculus

Key agreement in e-calculus

$$
\left.\begin{array}{l}
A \bullet B \\
A \longleftrightarrow B
\end{array}\right\} \quad \stackrel{\mathrm{KA}}{\longrightarrow} \quad A \longmapsto B
$$

Key agreement in e-calculus

Key agreement in e-calculus

Note: Conservation law of e-calculus.

Key agreement in e-calculus

$$
\begin{aligned}
& \left.\begin{array}{l}
A \bullet B \\
A \longleftrightarrow B
\end{array}\right\} \quad \stackrel{\mathrm{KA}}{\longrightarrow} \quad A \longmapsto B \\
& \left.\begin{array}{l}
A \bullet B \\
A \longleftrightarrow B \\
A-Q \rightarrow B
\end{array}\right\} \quad \xrightarrow{\text { QKD }} \quad A \longmapsto B \\
& \left.\begin{array}{l}
A \longrightarrow B \\
A \longleftrightarrow B
\end{array}\right\} \quad \xrightarrow{\mathrm{KA}} \quad A \Longrightarrow B
\end{aligned}
$$

Note: Conservation law of e-calculus.

Digital signature scheme in e-calculus

Information-theoretic authentication

Information-theoretic authentication

Information-theoretic authentication

Impersonation attack: The adversary sends a fraudulent message before observing the real message.

Success probability: P_{I}

Information-theoretic authentication

Impersonation attack: The adversary sends a fraudulent message before observing the real message.

Success probability: P_{I}
Note: $\quad P_{I} \geq|\mathcal{M}| /|\mathcal{C}|$.

Information-theoretic authentication

Impersonation attack: The adversary sends a fraudulent message before observing the real message.
Success probability: P_{I}
Note: $\quad P_{I} \geq|\mathcal{M}| /|\mathcal{C}|$.
Substitution attack: The adversary sends a fraudulent message after observing a correctly auth. message.
Success probability: P_{S}

Authenticating an ℓ-bit message with a k-bit key

$$
\left.\begin{array}{ccc}
A \stackrel{k}{\rightleftarrows} & B \\
A \xrightarrow{\ell} & B
\end{array}\right\} \quad \stackrel{\text { ITA }}{ } \quad A \stackrel{\ell}{\longrightarrow} B
$$

Authenticating an ℓ-bit message with a k-bit key

$$
\left.\begin{array}{cc}
A \xrightarrow{k} & B \\
A \xrightarrow[\longrightarrow]{l} & B
\end{array}\right\} \quad \xrightarrow{\text { ITA }} \quad A \bullet{ }^{\ell} B
$$

Example 1: $M \in\{0,1\}, C=M \| K$

Authenticating an ℓ-bit message with a k-bit key

$$
\left.\begin{array}{lll}
A & \stackrel{k}{\longrightarrow} & B \\
A & \xrightarrow{\ell} & B
\end{array}\right\} \quad \stackrel{\text { ITA }}{ } \quad A \stackrel{\ell}{\longrightarrow} B
$$

Example 1: $M \in\{0,1\}, \quad C=M \| K \quad P_{I}=2^{-k}, \quad P_{S}=1$

Authenticating an ℓ-bit message with a k-bit key

$$
\left.\begin{array}{lll}
A \stackrel{k}{\rightleftarrows} & B \\
A \xrightarrow{\ell} & B
\end{array}\right\} \quad \stackrel{\text { ITA }}{ } \quad A \bullet \stackrel{\ell}{\longrightarrow} B
$$

Example 1: $M \in\{0,1\}, \quad C=M \| K \quad P_{I}=2^{-k}, \quad P_{S}=1$
Example 2: $M \in\{0,1\}$

$$
\begin{gathered}
K=K_{1} \| K_{0} \text { with } K_{0}, K_{1} \in\{0,1\}^{k / 2} \\
C= \begin{cases}0 \| K_{0} & \text { if } M=0 \\
1 \| K_{1} & \text { if } M=1\end{cases}
\end{gathered}
$$

Authenticating an ℓ-bit message with a k-bit key

$$
\left.\right\} \quad \stackrel{\text { ITA }}{ } \quad A \stackrel{\ell}{\longrightarrow} B
$$

Example 1: $M \in\{0,1\}, \quad C=M \| K \quad P_{I}=2^{-k}, \quad P_{S}=1$
Example 2: $M \in\{0,1\}$

$$
\begin{gathered}
K=K_{1} \| K_{0} \text { with } K_{0}, K_{1} \in\{0,1\}^{k / 2} \\
C= \begin{cases}0 \| K_{0} & \text { if } M=0 \\
1 \| K_{1} & \text { if } M=1\end{cases} \\
P_{I}=2^{-k / 2}, \quad P_{S}=2^{-k / 2}
\end{gathered}
$$

Authenticating an ℓ-bit message with a k-bit key

$$
\left.\begin{array}{lll}
A \stackrel{k}{\rightleftarrows} & B \\
A \xrightarrow{\ell} & B
\end{array}\right\} \quad \stackrel{\text { ITA }}{ } \quad A \bullet \stackrel{\ell}{\longrightarrow} B
$$

Example 1: $M \in\{0,1\}, \quad C=M \| K \quad P_{I}=2^{-k}, \quad P_{S}=1$
Example 2: $M \in\{0,1,2\}$

$$
\begin{gathered}
K=K_{1} \| K_{0} \text { with } K_{0}, K_{1} \in\{0,1\}^{k / 2} \\
C= \begin{cases}0 \| K_{0} & \text { if } M=0 \\
1 \| K_{1} & \text { if } M=1 \\
2 \| K_{0} \oplus K_{1} & \text { if } M=2\end{cases} \\
P_{I}=2^{-k / 2}, \quad P_{S}=2^{-k / 2}
\end{gathered}
$$

Authenticating an ℓ-bit message with a k-bit key

$$
\left.\right\} \quad \stackrel{\text { TA }}{ } \quad A \bullet \stackrel{\ell}{\longrightarrow} B
$$

Example 1: $M \in\{0,1\}, \quad C=M \| K \quad P_{I}=2^{-k}, \quad P_{S}=1$
Example 2: $M \in\{0,1,2\}$

$$
\begin{gathered}
K=K_{1} \| K_{0} \text { with } K_{0}, K_{1} \in\{0,1\}^{k / 2} \\
C= \begin{cases}0 \| K_{0} & \text { if } M=0 \\
1 \| K_{1} & \text { if } M=1 \\
2 \| K_{0} \oplus K_{1} & \text { if } M=2\end{cases} \\
P_{I}=2^{-k / 2}, \quad P_{S}=2^{-k / 2}
\end{gathered}
$$

Example 3: $M \in G F\left(2^{k / 2}\right), \quad C=M \cdot K_{1}+K_{0}$

Authenticating an ℓ-bit message with a k-bit key

$$
\left.\begin{array}{ccc}
A & \stackrel{k}{\longrightarrow} & B \\
A & \stackrel{\ell}{\longrightarrow} & B
\end{array}\right\}
$$

Examp
Q: Is a lower cheating probability possible?

$$
\begin{gathered}
K=K_{1} \| K_{0} \text { with } K_{0}, K_{1} \in\{0,1\}^{k / 2} \\
C= \begin{cases}0 \| K_{0} & \text { if } M=0 \\
1 \| K_{1} & \text { if } M=1 \\
2 \| K_{0} \oplus K_{1} & \text { if } M=2\end{cases} \\
P_{I}=2^{-k / 2}, \quad P_{S}=2^{-k / 2}
\end{gathered}
$$

Example 3: $M \in G F\left(2^{k / 2}\right), \quad C=M \cdot K_{1}+K_{0}$

Authenticating an ℓ-bit message with a k-bit key

$$
\left.\right\} \quad \stackrel{\text { ITA }}{ } \quad A \bullet \stackrel{\ell}{\longrightarrow} B
$$

Examp
Q: Is a lower cheating probability possible?
Examp

Q: What about longer messages?

$$
\begin{gathered}
C= \begin{cases}1 \| K_{1} & \text { if } M=1 \\
2 \| K_{0} \oplus K_{1} & \text { if } M=2\end{cases} \\
P_{I}=2^{-k / 2}, \quad P_{S}=2^{-k / 2}
\end{gathered}
$$

Example 3: $M \in G F\left(2^{k / 2}\right), \quad C=M \cdot K_{1}+K_{0}$

Lower bounds on the cheating probability

$$
\left.\begin{array}{lll}
A & \stackrel{k}{\longrightarrow} & B \\
A & \xrightarrow{\ell} & B
\end{array}\right\} \quad \stackrel{\text { ITA }}{ } \quad A \stackrel{\ell}{\longrightarrow} B
$$

Lower bounds on the cheating probability

$$
\left.\begin{array}{lll}
A & \stackrel{k}{\longrightarrow} & B \\
A & \xrightarrow{\ell} & B
\end{array}\right\} \quad \stackrel{\text { ITA }}{ } \quad A \bullet \stackrel{\ell}{\longrightarrow} B
$$

Theorem: For every authentication system we have

$$
P_{I} \geq 2^{-I(C ; K)}
$$

Lower bounds on the cheating probability

$$
\left.\right\} \quad \stackrel{\text { ITA }}{ } \quad A \bullet \stackrel{\ell}{\longrightarrow} B
$$

Theorem: For every authentication system we have

$$
\begin{aligned}
& P_{I} \geq 2^{-I(C ; K)} \\
& P_{S} \geq 2^{-H(K \mid C)}
\end{aligned}
$$

Lower bounds on the cheating probability

$$
\left.\right\} \quad \stackrel{\text { ITA }}{ } \quad A \bullet \stackrel{\ell}{\longrightarrow} B
$$

Theorem: For every authentication system we have

$$
\begin{aligned}
P_{I} & \geq 2^{-I(C ; K)} \\
P_{S} & \geq 2^{-H(K \mid C)}
\end{aligned}
$$

$$
I(C ; K)=H(K)-H(K \mid C)
$$

Lower bounds on the cheating probability

$$
\left.\begin{array}{lll}
A & \stackrel{k}{\longrightarrow} & B \\
A & B
\end{array}\right\} \quad \stackrel{\text { ITA }}{\longrightarrow} \quad A \bullet \stackrel{\ell}{\longrightarrow} B
$$

Theorem: For every authentication system we have

$$
\begin{aligned}
P_{I} & \geq 2^{-I(C ; K)} \\
P_{S} & \geq 2^{-H(K \mid C)} \\
P_{I} \cdot P_{S} & \geq 2^{-H(K)}
\end{aligned}
$$

$$
I(C ; K)=H(K)-H(K \mid C)
$$

Lower bounds on the cheating probability

$$
\left.\begin{array}{ccc}
A & \stackrel{k}{\longrightarrow} & B \\
A \xrightarrow{\ell} & B
\end{array}\right\} \quad \stackrel{\text { ITA }}{ } \quad A \stackrel{\ell}{\bullet} B
$$

Theorem: For every authentication system we have

$$
\begin{aligned}
P_{I} & \geq 2^{-I(C ; K)} \\
P_{S} & \geq 2^{-H(K \mid C)} \\
P_{I} \cdot P_{S} & \geq 2^{-H(K)} \\
\max \left(P_{I}, P_{S}\right) & \geq 2^{-H(K) / 2}=2^{-k / 2}
\end{aligned}
$$

$$
I(C ; K)=H(K)-H(K \mid C)
$$

Lower bounds on the cheating probability

$$
\left.\begin{array}{ccc}
A & \stackrel{k}{\longrightarrow} & B \\
A & \xrightarrow{\longrightarrow} & B
\end{array}\right\}
$$

Theorem: For every authentication system we have

$$
\begin{aligned}
& P_{I} \geq 2^{-I(C ; K)} \\
& P_{S} \geq 2^{-H(K \mid C)} \\
& P_{I} \cdot P_{S} \geq 2^{-H(K)} \\
& \max \left(P_{I}, P_{S}\right) \geq 2^{-H(K) / 2}=2^{-k / 2} \\
& s=-\log _{2}\left(\max \left(P_{I}, P_{S}\right)\right) \leq k / 2
\end{aligned}
$$

$$
I(C ; K)=H(K)-H(K \mid C)
$$

Lower bounds on the cheating probability

$$
\left.\begin{array}{ccc}
A & \stackrel{k}{\longrightarrow} & B \\
A & \xrightarrow{\longrightarrow} & B
\end{array}\right\}
$$

Theorem: For every authentication system we have

$$
\begin{aligned}
& P_{I} \geq 2^{-I(C ; K)} \\
& P_{S} \geq 2^{-H(K \mid C)} \\
& P_{I} \cdot P_{S} \geq 2^{-H(K)} \\
& \max \left(P_{I}, P_{S}\right) \geq 2^{-H(K) / 2}=2^{-k / 2} \\
& s=-\log _{2}\left(\max \left(P_{I}, P_{S}\right)\right) \leq k / 2 \\
& k \geq 2 s \\
& I(C ; K)=H(K)=H(K \mid C)
\end{aligned}
$$

Authenticating an ℓ-bit message with a k-bit key

$$
\left.\begin{array}{ll}
A \xrightarrow{k} & B \\
A \xrightarrow[\longrightarrow]{l} & B
\end{array}\right\} \quad \xrightarrow{\text { ITA }} \quad A \bullet B
$$

Authenticating an ℓ-bit message with a k-bit key

$$
\left.\begin{array}{ccc}
A \stackrel{k}{\longrightarrow} & B \\
A & \xrightarrow[\longrightarrow]{l} & B
\end{array}\right\} \quad \xrightarrow{\text { ITA }} \quad A \stackrel{\ell}{\longrightarrow} B
$$

Block length n, field $F=G F\left(2^{n}\right)$,

$$
\begin{array}{ll}
m=\left[m_{b-1}, \ldots, m_{1}, m_{0}\right], & \\
K=b n \\
K=K_{1} \| K_{0}, & \\
k=2 n
\end{array}
$$

Authenticating an ℓ-bit message with a k-bit key

$$
\left.\begin{array}{ccc}
A & \stackrel{k}{\longleftrightarrow} & B \\
A & \xrightarrow{\ell} & B
\end{array}\right\}
$$

Block length n, field $F=G F\left(2^{n}\right)$,

$$
\begin{array}{ll}
m=\left[m_{b-1}, \ldots, m_{1}, m_{0}\right], & \\
K=b n \\
K=K_{1} \| K_{0}, & \\
k=2 n
\end{array}
$$

Message polynomials:

$$
\begin{aligned}
& p_{m}(x)=m_{b-1} x^{b-1}+\cdots m_{1} x+m_{0} \\
& q_{m}(x)=x \cdot p_{m}(x)=m_{b-1} x^{b}+\cdots m_{1} x^{2}+m_{0} x
\end{aligned}
$$

Authenticating an ℓ-bit message with a k-bit key

$$
\left.\begin{array}{ccc}
A & \stackrel{k}{\longleftrightarrow} & B \\
A & \xrightarrow{\ell} & B
\end{array}\right\}
$$

$$
\xrightarrow{\text { ITA }} \quad A \stackrel{\ell}{\longrightarrow} B
$$

Block length n, field $F=G F\left(2^{n}\right)$,
$m=\left[m_{b-1}, \ldots, m_{1}, m_{0}\right], \quad \ell=b n$
$K=K_{1} \| K_{0}$,
$k=2 n$
Authentication scheme (ITA): $C=M \| q_{M}\left(K_{1}\right)+K_{0}$

Message polynomials:

$$
\begin{aligned}
& p_{m}(x)=m_{b-1} x^{b-1}+\cdots m_{1} x+m_{0} \\
& q_{m}(x)=x \cdot p_{m}(x)=m_{b-1} x^{b}+\cdots m_{1} x^{2}+m_{0} x
\end{aligned}
$$

Authenticating an ℓ-bit message with a k-bit key

$$
\left.\begin{array}{ccc}
A & \stackrel{k}{\longleftrightarrow} & B \\
A & \xrightarrow{\ell} & B
\end{array}\right\}
$$

Block length n, field $F=G F\left(2^{n}\right)$,
$m=\left[m_{b-1}, \ldots, m_{1}, m_{0}\right], \quad \ell=b n$
$K=K_{1} \| K_{0}$,
$k=2 n$
Authentication scheme (ITA): $C=M \| q_{M}\left(K_{1}\right)+K_{0}$
Theorem: $P_{I}=P_{S}=b \cdot 2^{-n} ; \quad s=\frac{k}{2}-\log (2 \ell / k)$

Message polynomials:

$$
\begin{aligned}
& p_{m}(x)=m_{b-1} x^{b-1}+\cdots m_{1} x+m_{0} \\
& q_{m}(x)=x \cdot p_{m}(x)=m_{b-1} x^{b}+\cdots m_{1} x^{2}+m_{0} x
\end{aligned}
$$

Authenticating an ℓ-bit message with a k-bit key

$$
\left.\begin{array}{ccc}
A & \stackrel{k}{\longleftrightarrow} & B \\
A & \xrightarrow{\ell} & B
\end{array}\right\}
$$

Q: Trade-off between ℓ, k, s ?
Block length n, field $F=$ Q: Trade-o
$m=\left[m_{b-1}, \ldots, m_{1}, m_{0}\right], \quad \ell=b n$
$K=K_{1} \| K_{0}$,
$k=2 n$
Authentication scheme (ITA): $C=M \| q_{M}\left(K_{1}\right)+K_{0}$
Theorem: $P_{I}=P_{S}=b \cdot 2^{-n} ; \quad s=\frac{k}{2}-\log (2 \ell / k)$
Message polynomials:

$$
\begin{aligned}
& p_{m}(x)=m_{b-1} x^{b-1}+\cdots m_{1} x+m_{0} \\
& q_{m}(x)=x \cdot p_{m}(x)=m_{b-1} x^{b}+\cdots m_{1} x^{2}+m_{0} x
\end{aligned}
$$

Authenticating an ℓ-bit message with a k-bit key

$$
\left.\begin{array}{ll}
A \xrightarrow{k} & B \\
A \xrightarrow[\longrightarrow]{l} & B
\end{array}\right\} \quad \xrightarrow{\text { ITA }} \quad A \bullet B
$$

Block length n, field $F=\mathbf{Q}$: Trade-off between ℓ, k, s ? $m=\left[m_{b-1}, \ldots, m_{1}, m_{0}\right]$, $K=K_{1} \| K_{0}$,

This is essentially optimal!
Authentication scheme (ITA): $C=M \| q_{M}\left(K_{1}\right)+K_{0}$
Theorem: $P_{I}=P_{S}=b \cdot 2^{-n} ; \quad s=\frac{k}{2}-\log (2 \ell / k)$

Message polynomials:

$$
\begin{aligned}
& p_{m}(x)=m_{b-1} x^{b-1}+\cdots m_{1} x+m_{0} \\
& q_{m}(x)=x \cdot p_{m}(x)=m_{b-1} x^{b}+\cdots m_{1} x^{2}+m_{0} x
\end{aligned}
$$

Authenticating an ℓ-bit message with a k-bit key

$$
\left.\begin{array}{cc}
A \xrightarrow{k} B \\
A \xrightarrow[\longrightarrow]{l} & B
\end{array}\right\} \quad \xrightarrow{\text { IT }} \quad A \bullet B
$$

Block length n, field $F=\mathbf{Q}$: Trade-off between ℓ, k, s ? $m=\left[m_{b-1}, \ldots, m_{1}, m_{0}\right]$,
$K=K_{1} ل K_{n}$
This is essentially optimal!
Q: Can we nevertheless do better?
Authentic
Theorem: $P_{I}=P_{S}=b \cdot 2^{-n} ; \quad s=\frac{k}{2}-\log (2 \ell / k)$

Message polynomials:

$$
\begin{aligned}
& p_{m}(x)=m_{b-1} x^{b-1}+\cdots m_{1} x+m_{0} \\
& q_{m}(x)=x \cdot p_{m}(x)=m_{b-1} x^{b}+\cdots m_{1} x^{2}+m_{0} x
\end{aligned}
$$

Authenticating an ℓ-bit message by auth. t bits

$$
\left.\begin{array}{l}
A \xrightarrow[\longrightarrow]{\ell} B \\
A \xrightarrow{t} B
\end{array}\right\} \quad \xrightarrow{\text { A-Ampl }} \quad A \bullet B
$$

Authenticating an ℓ-bit message by auth. t bits

$$
\left.\begin{array}{l}
A \xrightarrow{\ell} B \\
A \bullet \longrightarrow
\end{array}\right\} \quad \xrightarrow{\text { A-Ampl }} \quad A \stackrel{\ell}{\longrightarrow} B
$$

Message poly.: $p_{m}(x)=m_{b-1} x^{b-1}+\cdots m_{1} x+m_{0}$

Authenticating an ℓ-bit message by auth. t bits

$$
\left.\begin{array}{l}
A \xrightarrow{\ell} B \\
A \bullet \longrightarrow
\end{array}\right\} \quad \xrightarrow{\text { A-Ampl }} \quad A \bullet \xrightarrow{\ell} B
$$

Protocol (A-Ampl): Send m over $A \xrightarrow{\ell} B$, then $R \| p_{m}(R)$ over $A \stackrel{t}{\longrightarrow} B$, for a random R.

Message poly.: $p_{m}(x)=m_{b-1} x^{b-1}+\cdots m_{1} x+m_{0}$

Authenticating an ℓ-bit message by auth. t bits

$$
\left.\begin{array}{l}
A \xrightarrow{\ell} B \\
A \bullet \longrightarrow
\end{array}\right\} \quad \xrightarrow{\text { A-Ampl }} \quad A \stackrel{\ell}{\longrightarrow} B
$$

Protocol (A-Ampl): Send m over $A \xrightarrow{\ell} B$, then $R \| p_{m}(R)$ over $A \xrightarrow{t} B$, for a random R.
Theorem: $P_{I}=P_{S}=(b-1) \cdot 2^{-n} ; \quad s=n-\log (b-1)$

Message poly.: $p_{m}(x)=m_{b-1} x^{b-1}+\cdots m_{1} x+m_{0}$

Authenticating an ℓ-bit message by auth. t bits

$$
\left.\begin{array}{l}
A \xrightarrow{\ell} B \\
A \bullet \longrightarrow
\end{array}\right\} \quad \xrightarrow{\text { A-Ampl }} \quad A \bullet \xrightarrow{\ell} B
$$

Protocol (A-Ampl): Send m over $A \xrightarrow{\ell} B$, then $R \| p_{m}(R)$ over $A \stackrel{t}{\longrightarrow} B$, for a random R.
Theorem: $P_{I}=P_{S}=(b-1) \cdot 2^{-n} ; \quad s=n-\log (b-1)$
Proof: For any $m, m^{\prime}, P\left(p_{m}(R)=p_{m^{\prime}}(R)\right) \leq(b-1) /|F|$ because $p_{m}(R)-p_{m^{\prime}}$ has at most $b-1$ roots.

Message poly.: $p_{m}(x)=m_{b-1} x^{b-1}+\cdots m_{1} x+m_{0}$

Authenticating an ℓ-bit message by auth. t bits

$$
\left.\begin{array}{l}
A \xrightarrow{\ell} B \\
A \bullet \longrightarrow
\end{array}\right\} \quad \xrightarrow{\text { A-Ampl }} \quad A \bullet \xrightarrow{\ell} B
$$

Protocol (A-Ampl): Send m over $A \xrightarrow{\ell} B$, then $R \| p_{m}(R)$ over $A \stackrel{t}{\longrightarrow} B$, for a random R.
Theorem: $P_{I}=P_{S}=(b-1) \cdot 2^{-n} ; \quad s=n-\log (b-1)$
Proof: For any $m, m^{\prime}, P\left(p_{m}(R)=p_{m^{\prime}}(R)\right) \leq(b-1) /|F|$ because $p_{m}(R)-p_{m^{\prime}}$ has at most $b-1$ roots.
Theorem: If used recursively, then $t=2 s+O(1)$.

Message poly.: $p_{m}(x)=m_{b-1} x^{b-1}+\cdots m_{1} x+m_{0}$

Authenticating an ℓ-bit message by auth. t bits

$$
\left.\begin{array}{l}
A \xrightarrow{\ell} B \\
A \bullet \longrightarrow
\end{array}\right\} \quad \xrightarrow{\text { A-Ampl }} \quad A \bullet \xrightarrow{\ell} B
$$

Protocol (A-Ampl): Send m over $A \xrightarrow{\ell} B$, then $R \| p_{m}(R)$ over $A \stackrel{t}{\longrightarrow} B$, for a random R.
Theorem: $P_{I}=P_{S}=(b-1) \cdot 2^{-n} ; \quad s=n-\log (b-1)$
Proof: For any $m, m^{\prime}, P\left(p_{m}(R)=p_{m^{\prime}}(R)\right) \leq(b-1) /|F|$ because $p_{m}(R)-p_{m^{\prime}}$ has at most $b-1$ roots.
Theorem: If used recursively, then $t=2 s+O(1)$.
Theorem: Combine with key-based scheme: $k \approx 2 s$
Message poly.: $p_{m}(x)=m_{b-1} x^{b-1}+\cdots m_{1} x+m_{0}$

Authenticating an ℓ-bit message by auth. t bits

$$
\left.\begin{array}{l}
A \xrightarrow{\ell} B \\
A \bullet \longrightarrow
\end{array}\right\} \quad \xrightarrow{\text { A-Ampl }} \quad A \bullet \xrightarrow{\ell} B
$$

Protocol (A-Ampl): Send m over $A \xrightarrow{\ell} B$, then $R \| p_{m}(R)$ over $A \stackrel{t}{\longrightarrow} B$, for a random R.
Theorem: $P_{I}=P_{S}=(b-1) \cdot 2^{-n} ; \quad s=n-\log (b-1)$
Proof: For any $m, m^{\prime}, P\left(p_{m}(R)=p_{m^{\prime}}(R)\right) \leq(b-1) /|F|$ because $p_{m}(R)-p_{m^{\prime}}$ has at most $b-1$ roots.
Theorem: If used recursively, then $t=2 s+C$ Optimal! Theorem: Combine with key-based scheme: $k \approx 2 s$

Message poly.: $p_{m}(x)=m_{b-1} x^{b-1}+\cdots m_{1} x+m_{0}$

Authenticating an ℓ-bit message by auth. t bits

$$
\begin{aligned}
& A \xrightarrow{A \xrightarrow{\ell} B} B \\
& A \bullet
\end{aligned} \quad \xrightarrow{\text { A-Ampl }} \quad A \bullet \xrightarrow{\ell} B
$$

Q: What does all of this really mean?
over $A \bullet{ }^{t} B$, for a random R.
Theorem: $P_{I}=P_{S}=(b-1) \cdot 2^{-n} ; \quad s=n-\log (b-1)$
Proof: For any $m, m^{\prime}, P\left(p_{m}(R)=p_{m^{\prime}}(R)\right) \leq(b-1) /|F|$ because $p_{m}(R)-p_{m^{\prime}}$ has at most $b-1$ roots.
Theorem: If used recursively, then $t=2 s+C$ Optimal! Theorem: Combine with key-based scheme: $k \approx 2 s$

Message poly.: $p_{m}(x)=m_{b-1} x^{b-1}+\cdots m_{1} x+m_{0}$

Authenticating an ℓ-bit message by auth. t bits

$$
\left.\begin{array}{l}
A \xrightarrow{\ell} B \\
A \stackrel{t}{\longrightarrow} B
\end{array}\right\} \quad \xrightarrow{\text { A-Ampl }} \quad A \bullet \stackrel{\ell}{\longrightarrow} B
$$

Q: What does all of this really mean? (e.g. for QKD?)
over $A \bullet{ }^{t} B$, for a random R.
Theorem: $P_{I}=P_{S}=(b-1) \cdot 2^{-n} ; \quad s=n-\log (b-1)$
Proof: For any $m, m^{\prime}, P\left(p_{m}(R)=p_{m^{\prime}}(R)\right) \leq(b-1) /|F|$ because $p_{m}(R)-p_{m^{\prime}}$ has at most $b-1$ roots.
Theorem: If used recursively, then $t=2 s+C$ Optimal! Theorem: Combine with key-based scheme: $k \approx 2 s$

Message poly.: $p_{m}(x)=m_{b-1} x^{b-1}+\cdots m_{1} x+m_{0}$

Security definitions in classical cryptography

Security definitions in classical cryptography

Definition: A public-key cryptosystem (PKC) is a triple of polynomial-time algorithms (PPT) with security parameter k :

1. KeyGen: input: k; output: a secret key s, a public key p.
2. Enc: input: k, message m, p; output: ciphertext c.
3. Dec: input: k, c, s; output: message m.

Security definitions in classical cryptography

Definition: A public-key cryptosystem (PKC) is a triple of polynomial-time algorithms (PPT) with security parameter k :

1. KeyGen: input: k; output: a secret key s, a public key p.
2. Enc: input: k, message m, p; output: ciphertext c.
3. Dec: input: k, c, s; output: message m.

Correctness: $\operatorname{Dec}(k, \operatorname{Enc}(k, m, p), s)=m$.

Security definitions in classical cryptography

Definition: A public-key cryptosystem (PKC) is a triple of polynomial-time algorithms (PPT) with security parameter k :

1. KeyGen: input: k; output: a secret key s, a public key p.
2. Enc: input: k, message m, p; output: ciphertext c.
3. Dec: input: k, c, s; output: message m.

Correctness: $\operatorname{Dec}(k, \operatorname{Enc}(k, m, p), s)=m$.
Security: A PKC is IND-CPA secure if no probabilistic polynomial time-bounded adversary A can win the following game with probability non-negligibly greater than $1 / 2$:

1. p is generated with KeyGen, and given to A.
2. A generates two equal-length messages m_{0} and m_{1}.
3. A random bit b is chosen, and A gets $c=\operatorname{Enc}\left(k, m_{b}, p\right)$.
4. A guesses the bit b.

Security definitions in classical cryptography

Definition: A public-key cryptosystem (PKC) is a triple of polynomial-time algorithms (PPT) with security parameter k :

1. KeyGen: input: k; output: a secret key s, a public key p.
2. Enc: input: k, message m, p; output: ciphertext c.
3. Dec: input: k, c, s; output: message m.

Correctness: $\operatorname{Dec}(k, \operatorname{Enc}(k, m, p), s)=m$.
Security: A PKC is IND-CPA secure if no probabilistic polynomial time-bounded adversary A can win the following game with probability non-negligibly greater than $1 / 2$:

1. p is generated with KeyGen, and given to A.
2. A generates two equal-length messages m_{0} and m_{1}.
3. A random bit b is chosen, and A gets $c=\operatorname{Enc}\left(k, m_{b}, p\right)$.
4. A guesses the bit b.

Sepurity definitinnc in claccinal crvntnaranhy

Two questions that arise:

Q1: What does the definition really mean?
game with probability non-negligibly greater than $1 / 2$:

1. p is generated with KeyGen, and given to A.
2. A generates two equal-length messages m_{0} and m_{1}.
3. A random bit b is chosen, and A gets $c=\operatorname{Enc}\left(k, m_{b}, p\right)$.
4. A guesses the bit b.

Spcurity definitinnc in claccinal crvntnaranhy

Two questions that arise:

Q1: What does the definition really mean? Where can we use an IND-CPA secure PKC?
game with probability non-negligibly greater than $1 / 2$:

1. p is generated with KeyGen, and given to A.
2. A generates two equal-length messages m_{0} and m_{1}.
3. A random bit b is chosen, and A gets $c=\operatorname{Enc}\left(k, m_{b}, p\right)$.
4. A guesses the bit b.

Spcurity definitinnc in claccinal crvntnaranhy

Two questions that arise:

Q1: What does the definition really mean?
Where can we use an IND-CPA secure PKC?
Which is the right definition for a given application?
game with probability non-negligibly greater than $1 / 2$:

1. p is generated with KeyGen, and given to A.
2. A generates two equal-length messages m_{0} and m_{1}.
3. A random bit b is chosen, and A gets $c=\operatorname{Enc}\left(k, m_{b}, p\right)$.
4. A guesses the bit b.

Securitv definitinnc in claccical crvntnoranhy

Two questions that arise:

Q1: What does the definition really mean?
Where can we use an IND-CPA secure PKC?
Which is the right definition for a given application?

Q2: Are artefacts like Turing machines, asymptotics, poly-time, negligibility, etc. really needed?
game with probability non-negligibly greater than $1 / 2$:

1. p is generated with KeyGen, and given to A.
2. A generates two equal-length messages m_{0} and m_{1}.
3. A random bit b is chosen, and A gets $c=\operatorname{Enc}\left(k, m_{b}, p\right)$.
4. A guesses the bit b.

Security dofinitinnc in claccical crvntnnranhy

Two questions that arise:

Q1: What does the definition really mean?

Q2: Are artefacts like Turing machines, asymptotics, poly-time, negligibility, etc. really needed?
game with probability non-negligibly greater than $1 / 2$:

1. p is generated with KeyGen, and given to A.
2. A generates two equal-length messages m_{0} and m_{1}.
3. A random bit b is chosen, and A gets $c=\operatorname{Enc}\left(k, m_{b}, p\right)$.
4. A guesses the bit b.

Senurity definitinnc in claccinal ervntnnranhy

Two questions that arise:

Q1: What does the definition really mean?

Q2: Are-artnfonta like Turina monhinan anumntation pol A2: Abstraction
game with probability non-negligibly greater than 1/2:

1. p is generated with KeyGen, and given to A.
2. A generates two equal-length messages m_{0} and m_{1}.
3. A random bit b is chosen, and A gets $c=\operatorname{Enc}\left(k, m_{b}, p\right)$.
4. A guesses the bit b.

Shannon's channel coding theorem

Shannon's channel coding theorem

n-bit noisy channel

Shannon's channel coding theorem

encoding n -bit noisy channel

Shannon's channel coding theorem

encoding n-bit noisy channel decoding

Shannon's channel coding theorem

encoding n-bit noisy channel decoding

k-bit error-free channel

Shannon's channel coding theorem

encoding n-bit noisy channel decoding

k-bit error-free channel

Shannon's channel coding theorem

encoding n-bit noisy channel decoding

metric ? k-bit error-free channel

Shannon's channel coding theorem

encoding n -bit noisy channel decoding

$\operatorname{cod} \mathrm{BSC}_{\delta}^{n} \quad$ dec
metric ? k-bit error-free channel

\sim
BSC ${ }_{0}^{k}$

Shannon's channel coding theorem

encoding n -bit noisy channel decoding

$\operatorname{cod} \quad \mathrm{BSC}_{\delta}^{n} \quad$ dec

metric ? k-bit error-free channel

ค
\longmapsto

Shannon's channel coding theorem

encoding n-bit noisy channel decoding

$\operatorname{cod} \quad \mathrm{BSC}_{\delta}^{n} \quad$ dec
$\pi_{1} \mathbf{R} \pi_{2} \approx \mathbf{S}$

metric ? k-bit error-free channel

\sim
BSC ${ }_{0}^{k}$
\sim

Shannon's channel coding theorem

encoding n-bit noisy channel decoding

$\operatorname{cod} \quad \mathrm{BSC}_{\delta}^{n} \quad \mathrm{dec}$
\sim
BSC ${ }_{0}^{k}$

$\pi_{1} \mathbf{R} \pi_{2} \approx \mathbf{S}$

Shannon's channel coding theorem

encoding n-bit noisy channel decoding

$\operatorname{cod} \quad \mathrm{BSC}_{\delta}^{n} \quad$ dec
\sim
BC ${ }_{0}^{k}$

$\pi_{1} \mathbf{R} \pi_{2} \approx \mathbf{S} \Longleftrightarrow: \quad \mathbf{R} \xrightarrow{\left(\pi_{1}, \pi_{2}\right)} \mathbf{S}$

Shannon's channel coding theorem

encoding n-bit noisy channel decoding

$\operatorname{cod} \mathrm{BSC}_{\delta}^{n} \quad$ dec

Construction:

$$
\pi_{1} \mathbf{R} \pi_{2} \approx \mathbf{S} \Longleftrightarrow: \mathbf{R} \xrightarrow{\left(\pi_{1}, \pi_{2}\right)} \mathbf{S}
$$

Shannon's channel coding theorem

encoding n-bit noisy channel decoding

$\operatorname{cod} \mathrm{BSC}_{\delta}^{n} \quad$ dec

Construction:

$$
\pi_{1} \mathbf{R} \pi_{2} \quad \approx_{\epsilon} \mathbf{S} \quad \Longleftrightarrow: \quad \mathbf{R} \xrightarrow{\left(\pi_{1}, \pi_{2}\right), \epsilon} \mathbf{S}
$$

Shannon's channel coding theorem

encoding n-bit noisy channel decoding

metric ? k-bit error-free channel

Construction:

$$
\pi_{1} \mathbf{R} \pi_{2} \quad \approx_{\epsilon} \mathbf{S} \quad \Longleftrightarrow: \quad \mathbf{R} \xrightarrow{\left(\pi_{1}, \pi_{2}\right), \epsilon} \mathbf{S}
$$

Shannon's channel coding theorem

encoding n -bit noisy channel decoding

$\operatorname{cod} \quad \mathrm{BSC}_{\delta}^{n} \quad$ dec
R 1. Construction paradigm

Construction:

$$
\pi_{1} \mathbf{R} \pi_{2} \quad \approx_{\epsilon} \mathbf{S} \quad \Longleftrightarrow: \quad \mathbf{R} \xrightarrow{\left(\pi_{1}, \pi_{2}\right), \epsilon} \mathbf{S}
$$

Shannon's channel coding theorem

encoding n-bit noisy channel decoding

$\operatorname{cod} B S C_{\delta}^{n} \quad$ dec
$-\pi_{1}-\mathbf{R} \sqrt{\text { 1. Construction paradigm }}$
2. Abstract system algebra

$$
\pi_{1} \mathbf{R} \pi_{2} \quad \approx_{\epsilon} \mathbf{S} \quad \Longleftrightarrow: \quad \mathbf{R} \xrightarrow{\left(\pi_{1}, \pi_{2}\right), \epsilon} \mathbf{S}
$$

Shannon's channel coding theorem

encoding n-bit noisy channel decoding

metric ? k-bit error-free channel

cod BSC 3. Constructive cryptography

2. Abstract system algebra

on:

$\pi_{1} \mathbf{R} \pi_{2} \quad \approx_{\epsilon} \mathbf{S} \quad \Longleftrightarrow: \mathbf{R} \xrightarrow{\left(\pi_{1}, \pi_{2}\right), \epsilon} \mathbf{S}$

Shannon's channel codina theorem

4. Discrete systems, metric
encoding n-bit noisy channel decoding metric ? k-bit error-free channel

cod BSC 3. Constructive cryptography

5. Abstract system algebra

on:

$$
\pi_{1} \mathbf{R} \pi_{2} \quad \approx_{\epsilon} \mathbf{S} \quad \Longleftrightarrow: \quad \mathbf{R} \xrightarrow{\left(\pi_{1}, \pi_{2}\right), \epsilon} \mathbf{S}
$$

Shannon's channel coding theorem

encoding n -bit noisy channel decoding

$\operatorname{cod} \quad \mathrm{BSC}_{\delta}^{n} \quad$ dec
R 1. Construction paradigm

Construction:

$$
\pi_{1} \mathbf{R} \pi_{2} \quad \approx_{\epsilon} \mathbf{S} \quad \Longleftrightarrow: \quad \mathbf{R} \xrightarrow{\left(\pi_{1}, \pi_{2}\right), \epsilon} \mathbf{S}
$$

The construction paradigm

The construction paradigm

$$
\mathrm{R} \xrightarrow{\alpha} \mathrm{~S}
$$

Construct an object S from another object \mathbf{R} via construction α.

The construction paradigm

$$
\mathrm{R} \xrightarrow{\alpha} \mathrm{~S}
$$

Construct an object S from another object \mathbf{R} via construction α.

Examples:

$$
\mathrm{BSC}_{\delta}^{n} \xrightarrow{(\mathrm{cod}, \mathrm{dec}), \epsilon} \mathrm{BSC}_{0}^{k}
$$

The construction paradigm

$$
\mathrm{R} \xrightarrow{\alpha} \mathrm{~S}
$$

Construct an object S from another object \mathbf{R} via construction α.

Examples:

A (k, m)-pseudo-random generator (PRG) constructs a uniform m-bit string from a uniform k-bit string:

$$
\mathrm{U}_{k} \xrightarrow{\mathrm{PRG}} \mathrm{U}_{m}
$$

The construction paradigm

$$
\mathrm{R} \xrightarrow{\alpha} \mathrm{~S}
$$

Construct an object \mathbf{S} from another object \mathbf{R} via construction α.

Examples:

A key agreement protocol (KAP) constructs a shared secret n-bit key from ???:

$$
\text { ??? } \xrightarrow{\mathrm{KAP}} \mathrm{KEY}_{n}
$$

The construction paradigm

$$
\mathrm{R} \xrightarrow{\alpha} \mathrm{~S}
$$

Construct an object \mathbf{S} from another object \mathbf{R} via construction α.

Examples:

A complexity-theoretic reduction constructs an efficient algorithm for problem P from an efficient algorithm for problem Q.

The construction paradigm

$$
\mathrm{R} \xrightarrow{\alpha} \mathrm{~S}
$$

Construct an object \mathbf{S} from another object \mathbf{R} via construction α.

Formally: set of objects Ω, constructor set $\langle\Gamma, \circ$, id \rangle, construction $\subseteq \Omega \times \Gamma \times \Omega$

The construction paradigm

$$
\mathrm{R} \xrightarrow{\alpha} \mathrm{~S}
$$

Construct an object S from another object \mathbf{R} via construction α.

Formally: set of objects Ω,
constructor set $\langle\Gamma, \circ$, id \rangle,
construction $\subseteq \Omega \times \Gamma \times \Omega$
Definition: A construction is composable if
$\mathbf{R} \xrightarrow{\alpha} \mathbf{S} \wedge \mathbf{S} \xrightarrow{\beta} \mathbf{T} \Rightarrow \mathbf{R} \xrightarrow{\alpha \circ \beta} \mathbf{T}$

The construction paradigm

$$
\mathrm{R} \xrightarrow{\alpha} \mathrm{~S}
$$

Construct an object S from another object \mathbf{R} via construction α.

Formally: set of objects Ω, metric constructor set $\langle\Gamma, \circ$, id \rangle, construction $\subseteq \Omega \times \Gamma \times \Omega$

Definition: A construction is composable if
$\mathbf{R} \xrightarrow{\alpha, \epsilon} \mathbf{S} \wedge \mathbf{S} \xrightarrow{\beta, \epsilon^{\prime}} \mathbf{T} \Rightarrow \mathbf{R} \xrightarrow{\alpha \circ \beta, \epsilon+\epsilon^{\prime}}$

Shannon's channel coding theorem

encoding n -bit noisy channel decoding

$\operatorname{cod} \mathrm{BSC}_{\delta}^{n} \quad$ dec

metric ? k-bit error-free channel

2. Abstract system algebra

$$
\pi_{1} \mathbf{R} \pi_{2} \quad \approx_{\epsilon} \mathbf{S} \quad \Longleftrightarrow: \quad \mathbf{R} \xrightarrow{\left(\pi_{1}, \pi_{2}\right), \epsilon} \mathbf{S}
$$

on:

A dilemma in computer science

A dilemma in computer science

"Theorem" means theorem !!!

A dilemma in computer science

"Theorem" means theorem !!!

\Rightarrow One must precisely define computation, efficiency, infeasibility, non-negligible, security,

A dilemma in computer science

"Theorem" means theorem !!!

\Rightarrow One must precisely define computation, efficiency, infeasibility, non-negligible, security,
\Rightarrow Turing machines, communication tapes, asymptotics, polynomial-time, ...

A dilemma in computer science

"Theorem" means theorem !!!

\Rightarrow One must precisely define computation, efficiency, infeasibility, non-negligible, security,
\Rightarrow Turing machines, communication tapes, asymptotics, polynomial-time, ...
\Rightarrow enormous complexity, imprecise papers, ...

A dilemma in computer science

Proposed paradigm shift in Computer Science:

Top-down abstraction
 instead of
 bottom-up definitions

securtiy,
\Rightarrow Turing machines, communication tapes, asymptotics, polynomial-time, ...
\Rightarrow enormous complexity, imprecise papers, ...

A dilemma in computer science

Proposed paradigm shift in Computer Science:

Top-down abstraction
 instead of
 bottom-up definitions

Goals of abstraction:

- eliminate irrelevant details, minimality
- simpler definitions
- generality of results
- simpler proofs, elegance
- didactic suitability, better understanding Irs, ...

Abstract system algebra $\langle\Phi, \Sigma\rangle \quad[\mathrm{M}-$ Renner11]

Resource set Φ for interface set \mathcal{I} (e.g. $\mathcal{I}=\{1,2,3,4\}$)
Converter set Σ

Algebraic laws:

- $R \| S \in \Phi \quad$ notation: $[R, S]$
- $\alpha^{i} \mathbf{R} \in \Phi \quad$ for all $\mathbf{R} \in \Phi, \alpha \in \Sigma, i \in \mathcal{I}$
- $\alpha^{i} \beta^{j} \mathbf{R}=\beta^{j} \alpha^{i} \mathbf{R} \quad$ for all $i \neq j$
- $1^{i} \mathbf{R}=\mathbf{R} \quad$ for all i

Abstract system algebra $\langle\Phi, \Sigma\rangle \quad$ [M-Renner11]

Resource set Φ for interface set \mathcal{I} (e.g. $\mathcal{I}=\{1,2,3,4\}$)
Converter set Σ

Pseudo-metric d on Φ :
Def.: \mathbf{d} is non-expanding $\Longleftrightarrow \mathbf{d}\left(\alpha^{i} \mathbf{R}, \alpha^{i} \mathbf{S}\right) \leq \mathbf{d}(\mathbf{R}, \mathrm{S})$

- $\alpha^{i} \mathbf{R} \in \Phi \quad$ for all $\mathbf{R} \in \Phi, \alpha \in \Sigma, i \in \mathcal{I}$
- $\alpha^{i} \beta^{j} \mathbf{R}=\beta^{j} \alpha^{i} \mathbf{R} \quad$ for all $i \neq j$
- $1^{i} \mathbf{R}=\mathbf{R} \quad$ for all i

Abstract system algebra $\langle\Phi, \Sigma\rangle \quad$ [M-Renner11]

Resource set Φ for interface set \mathcal{I} (e.g. $\mathcal{I}=\{1,2,3,4\}$)
Converter set Σ

Pseudo-metric d on Φ :
Def.: \mathbf{d} is non-expanding $\Longleftrightarrow \mathbf{d}\left(\alpha^{i} \mathbf{R}, \alpha^{i} \mathbf{S}\right) \leq \mathbf{d}(\mathbf{R}, \mathrm{S})$

- $\alpha^{i} \mathbf{R} \in \Phi \quad$ for all $\mathbf{R} \in \Phi, \alpha \in \Sigma, i \in \mathcal{I}$
- $\alpha^{i} \beta^{j} \mathbf{R}=\beta^{j} \alpha^{i} \mathbf{R} \quad$ for all $i \neq j$
- $1^{i} \mathbf{R}=\mathbf{R} \quad$ for all i

Abstract system algebra $\langle\Phi, \Sigma\rangle \quad[\mathrm{M}-$ Renner11]

Resource set Φ for interface set \mathcal{I} (e.g. $\mathcal{I}=\{1,2,3,4\}$)
Converter set Σ

Pseudo-metric d on Φ :
Def.: \mathbf{d} is non-expanding $\Longleftrightarrow \mathbf{d}\left(\alpha^{i} \mathbf{R}, \alpha^{i} \mathbf{S}\right) \leq \mathbf{d}(\mathbf{R}, \mathrm{S})$

- $\alpha^{i} \mathbf{R} \in \Phi \quad$ for all $\mathbf{R} \in \Phi, \alpha \in \Sigma, i \in \mathcal{I}$
- $\alpha^{i} \beta^{j} \mathbf{R}=\beta^{j} \alpha^{i} \mathbf{R} \quad$ for all $i \neq j$
- $1^{i} \mathbf{R}=\mathbf{R} \quad$ for all i

Levels of abstraction

\# level

concepts treated at this level

composability, construction trees

1. Abstract systems
composability proof
2. Discrete systems

I/O bahavior, indistinguish. proofs
3. System implem.

Levels of abstraction

\# level

concepts treated at this level

0. Constructions
composability, construction trees
1. Abstract systems composability proof
2. Discrete systems I/O bahavior, indistinguish. proofs
3. System implem. complexity, efficiency, asymptotics

Levels of abstraction

\# level

concepts treated at this level

0. Constructions
composability, construction trees
1. Abstract systems composability proof
2. Discrete systems I/O bahavior, indistinguish. proofs
3. System implem. complexity, efficiency, asymptotics encoding n-bit noisy channel decoding

Levels of abstraction

$\#$	level	concepts treated at this level
0.	Constructions	composability, construction trees
1.	Abstract systems	composability proof
2.	Discrete systems	I/O bahavior, indistinguish. proofs
3.	System implem.	complexity, efficiency, asymptotics

```
system EncryPT
    read }x\mathrm{ at outside interface
    read }k\mathrm{ at inside interface
    c}\leftarrow\operatorname{enc}(x,k
```


Abstraction levels in algebra:

1. Abstract group: $\left\langle G, \star, e,(\cdot)^{-1}\right\rangle$
2. Instantiations: Integers, real number, elliptic curves
3. Representations: e.g. projective coordinates for ECs
4. Abstract systems composability proof
5. Discrete systems

I/O bahavior, indistinguish. proofs
3. System implem.

Constructive cryptography

Constructive cryptography

One-time pad:

Constructive cryptography

One-time pad:

Security?

Constructive cryptography

One-time pad:

Security [Shannon]: $\mathbf{I}(\mathbf{C}, \mathbf{M})=0$ (perfect secrecy)

One-time pad in constructive cryptography

$\$$
$\operatorname{sim} \dagger$

One-time pad in constructive cryptography

One-time pad in constructive cryptography

One-time pad in constructive cryptography

otp-dec ${ }^{B}$ otp-enc ${ }^{\text {A }}[\mathrm{KEY}, \mathrm{AUT}] \equiv \operatorname{sim}^{\mathrm{E}}$ SEC

One-time pad in constructive cryptography

otp-dec ${ }^{B}$ otp-enc ${ }^{\text {A }}[\mathrm{KEY}, \mathrm{AUT}] \equiv$ sim $^{\mathrm{E}}$ SEC as a construction: $[\mathrm{KEY}, \mathrm{AUT}] \xrightarrow{\mathrm{OTP}} \mathrm{SEC}$

One-time pad in constructive cryptography

Draws on work by [Goldreich-Micali-Wigderson85], [Canetti01], [Pfitzmann-Waidner], [M.-Schmid96], ...

otp-dec ${ }^{B}$ otp-enc ${ }^{\text {A }}[\mathrm{KEY}, \mathrm{AUT}] \equiv$ sim $^{\mathrm{E}}$ SEC as a construction: [KEY, AUT] $\xrightarrow{\text { OTP }}$ SEC

One-time pad in constructive cryptography

otp-dec ${ }^{B}$ otp-enc ${ }^{\text {A }}[\mathrm{KEY}, \mathrm{AUT}] \equiv$ sim $^{\mathrm{E}}$ SEC as a construction: $[\mathrm{KEY}, \mathrm{AUT}] \xrightarrow{\mathrm{OTP}} \mathrm{SEC}$

Encryption in constructive cryptography

$\operatorname{dec}^{\mathrm{B}} \mathrm{enc}^{\mathrm{A}}$ [KEY, AUT] $\approx \operatorname{sim}^{\mathrm{E}}$ SEC as a construction: [KEY, AUT] $\xrightarrow{\text { SYM }}$ SEC

Encryption in constructive cryptography

dec^{B} enc $^{\mathrm{A}}[\mathrm{KEY}, \mathrm{AUT}] \approx \operatorname{sim}^{\mathrm{E}}$ SEC
as a construction: [KEY, AUT] $\xrightarrow{\text { SYM }}$ SEC

Encryption in constructive cryptography

$$
\mathbf{R} \xrightarrow{\left(\pi_{1}, \pi_{2}\right)} \mathbf{S}: \Leftrightarrow \quad \exists \sigma: \pi^{\mathrm{A}} \pi_{2}^{\mathrm{B}} \mathbf{R} \approx \sigma^{\mathrm{E}} \mathbf{S}
$$

$\operatorname{dec}^{B} \mathrm{enc}^{\mathrm{A}}[\mathrm{KEY}, \mathrm{AUT}] \approx \operatorname{sim}^{\mathrm{E}}$ SEC
as a construction: [KEY, AUT] $\xrightarrow{\text { SYM }}$ SEC

Encryption in constructive cryptography

$\operatorname{dec}^{B} \mathrm{enc}^{\mathrm{A}}[\mathrm{KEY}, \mathrm{AUT}] \approx \operatorname{sim}^{\mathrm{E}}$ SEC as a construction: [KEY, AUT] $\xrightarrow{\text { SYM }}$ SEC

$$
\mathbf{R} \xrightarrow{\left(\pi_{1}, \pi_{2}\right)} \mathbf{S}: \Leftrightarrow \quad \exists \sigma: \pi^{\mathrm{A}} \pi_{2}^{\mathrm{B}} \mathbf{R} \approx \sigma^{\mathrm{E}} \mathbf{S}
$$

and

$$
\pi_{1}^{\mathrm{A}} \pi_{2}^{\mathrm{B}} \perp^{\mathrm{E}} \mathrm{R} \approx \perp^{\mathrm{E}} \mathrm{~S}
$$

dec^{B} enc $^{\mathrm{A}}[\mathrm{KEY}, \mathrm{AUT}] \approx \operatorname{sim}^{\mathrm{E}}$ SEC as a construction: [KEY, AUT] $\xrightarrow{\text { SYM }}$ SEC

dec^{B} enc $^{\mathrm{A}}[\mathrm{KEY}, \mathrm{AUT}] \approx \operatorname{sim}^{\mathrm{E}}$ SEC as a construction: [KEY, AUT] $\xrightarrow{\text { SYM }}$ SEC

$$
\mathbf{R} \xrightarrow{\left(\pi_{1}, \pi_{2}\right)} \mathbf{S}: \Leftrightarrow \quad \exists \sigma: \pi^{\mathrm{A}} \pi_{2}^{\mathrm{B}} \mathbf{R} \approx \sigma^{\mathrm{E}} \mathbf{S}
$$

and

$$
\pi_{1}^{\mathrm{A}} \pi_{2}^{\mathrm{B}} \perp^{\mathrm{E}} \mathrm{R} \approx \perp^{\mathrm{E}} \mathrm{~S}
$$

dec^{B} enc $^{\mathrm{A}}[\mathrm{KEY}, \mathrm{AUT}] \approx \operatorname{sim}^{\mathrm{E}}$ SEC as a construction: [KEY, AUT] $\xrightarrow{\text { SYM }}$ SEC

Encryption
 in constructive cryptography

Encryption
 in constructive cryptography

Key agreement in CC

Key agreement in CC

Key agreement in CC

융

Key agreement in CC

sim $\frac{\square}{\square}$
[AUT, AUT’] $\xrightarrow{\text { DifHel }} \mathrm{KEY}$

Key agreement in CC (i.t. security)

융

Key agreement in CC (i.t. security)

sim $\frac{\square}{\square}$
[AUT, AUT', $\left.\mathrm{P}_{\mathrm{XYZ}}\right] \xrightarrow{\text { KA PD }} \quad \mathrm{KEY}$

Key agreement in CC (i.t. security)

sim $\frac{\square}{\square}$
$\left[A U T\right.$, AUT', $\left.\mathrm{P}_{\mathbf{X Y Z}}\right] \xrightarrow{K A P D}{ }_{\mathrm{KEY}}$

Key agreement in CC (i.t. security)

Theorem: $\mathbf{H}(\mathrm{KEY}) \leq \boldsymbol{\operatorname { m i n }}(\mathrm{I}(\mathrm{X} ; \mathrm{Y}), \mathrm{I}(\mathrm{X} ; \mathrm{Y} \mid \mathrm{Z}))$ if $\epsilon=0$.

sim $\frac{\square}{\$ 1}$
$\left[\right.$ AUT, AUT', $\left.\mathrm{P}_{\mathbf{X Y Z}}\right] \xrightarrow{\mathrm{KAPD}}{ }^{\epsilon} \mathrm{KEY}$

Key agreement in CC (i.t. security)

kap_A	AUT	kap_B		
		$\Sigma_{\text {E }}$		

Theorem: $\mathbf{H}(\mathrm{KEY}) \leq \boldsymbol{\operatorname { m i n }}(\mathrm{I}(\mathrm{X} ; \mathrm{Y}), \mathrm{I}(\mathrm{X} ; \mathrm{Y} \mid \mathrm{Z}))$ if $\epsilon=0$.

Theorem: $\quad \epsilon \geq \mathbf{f}(\mathbf{H}(\mathrm{KEY})-\mathbf{I}(\mathrm{X} ; \mathrm{Y} \mid \mathrm{Z}))$

$\operatorname{sim} \square$
[AUT, AUT', $\left.\mathbf{P}_{\mathbf{X Y Z}}\right] \xrightarrow{\mathrm{KAPD}_{8} \epsilon} \mathrm{KEY}$

Composition: an example

Composition: an example

$\xrightarrow{\text { DifHelqSYM }}$ SEC

Composition: an example

$[$ AUT, AUT']
$[\mathrm{KEY}$, AUT"] $\xrightarrow{\xrightarrow{\text { DifHel }}} \quad$ KEY

$\xrightarrow{\text { DifHeloSYM }}$ SEC

$\xrightarrow{\text { QKDoOTP }}$
SEC

Composition: an example

$\left.\begin{array}{lll}\text { [AUT, AUT’] } & \xrightarrow{\text { DifHel }} & \text { KEY } \\ {[\text { KEY, AUT"] }} & \xrightarrow{\text { SYM }} & \text { SEC }\end{array}\right\} \Rightarrow$

$\xrightarrow{\text { DifHeloSYM }}$ SEC

$\xrightarrow{\text { QKDopTP }}$ SEC

Attention: Quantum Key Distribution, though proven secure, did not compose before 2005 [KRBM07,Renner05]

Composition: an example

$$
[K E Y, I C, Q C] \xrightarrow{I T A \circ Q K D \circ I T A \circ O T P} \text { SEC ?? }
$$

$\xrightarrow{\text { QKDootP }}$ SEC

Attention: Quantum Key Distribution, though proven secure, did not compose before 2005 [KRBM07,Renner05]

Proof of composition (for ABE-setting)

Proof of composition (for ABE-setting)

Definition: A construction is composable if

$$
\mathbf{R} \xrightarrow{\alpha} \mathbf{S} \wedge \mathbf{S} \xrightarrow{\beta} \mathbf{T} \Rightarrow \mathbf{R} \xrightarrow{\alpha \circ \beta} \mathbf{T}
$$

Proof of composition (for ABE-setting)

Definition: A construction is composable if

$$
\mathbf{R} \xrightarrow{\alpha} \mathbf{S} \wedge \mathbf{S} \xrightarrow{\beta} \mathbf{T} \Rightarrow \mathbf{R} \xrightarrow{\alpha \circ \beta} \mathbf{T}
$$

Proof of composition (for ABE-setting)

Definition: A construction is composable if

$$
\mathbf{R} \xrightarrow{\alpha} \mathbf{S} \wedge \mathbf{S} \xrightarrow{\beta} \mathbf{T} \Rightarrow \mathbf{R} \xrightarrow{\alpha \circ \beta} \mathbf{T}
$$

Proof of composition (for ABE-setting)

Definition: A construction is composable if
$\mathbf{R} \xrightarrow{\alpha} \mathbf{S} \wedge \mathbf{S} \xrightarrow{\beta} \mathbf{T} \Rightarrow \mathbf{R} \xrightarrow{\alpha \circ \beta} \mathbf{T}$

Pseudo-metric \mathbf{d} on Φ is non-expanding if

$$
\mathbf{d}\left(\gamma^{i} \mathbf{R}, \gamma^{i} \mathbf{S}\right) \leq \mathbf{d}(\mathbf{R}, \mathbf{S})
$$

Proof of composition (for ABE-setting)

Definition: A construction is composable if

$$
\mathbf{R} \xrightarrow{\alpha} \mathbf{S} \wedge \mathbf{S} \xrightarrow{\beta} \mathbf{T} \Rightarrow \mathbf{R} \xrightarrow{\alpha \circ \beta} \mathbf{T}
$$

Proof of composition (for ABE-setting)

Definition: A construction is composable if

$$
\mathbf{R} \xrightarrow{\alpha} \mathbf{S} \wedge \mathbf{S} \xrightarrow{\beta} \mathbf{T} \Rightarrow \mathbf{R} \xrightarrow{\alpha \circ \beta} \mathbf{T}
$$

Proof of composition (for ABE-setting)

Definition: A construction is composable if

$$
\mathbf{R} \xrightarrow{\alpha} \mathbf{S} \wedge \mathbf{S} \xrightarrow{\beta} \mathbf{T} \Rightarrow \mathbf{R} \xrightarrow{\alpha \circ \beta} \mathbf{T}
$$

Proof of composition (for ABE-setting)

Definition: A construction is composable if

$$
\mathbf{R} \xrightarrow{\alpha} \mathbf{S} \wedge \mathbf{S} \xrightarrow{\beta} \mathbf{T} \Rightarrow \mathbf{R} \xrightarrow{\alpha \circ \beta} \mathbf{T}
$$

$$
=
$$

Proof of composition (for ABE-setting)

Definition: A construction is composable if
$\mathbf{R} \xrightarrow{\alpha} \mathbf{S} \wedge \mathbf{S} \xrightarrow{\beta} \mathbf{T} \Rightarrow \mathbf{R} \xrightarrow{\alpha \circ \beta} \mathbf{T}$

Generalizations of the ABE-setting:

- $\mathrm{n} \neq 3$ parties
- any party can be dishonest

Thank you!

U. Maurer, Authentication Theory and Hypothesis Testing, IEEE Trans. on Information Theory, 2005,
U. Maurer and R. Renner, Abstract Cryptography, Second Symposium in Innovations in Computer Science, ICS 2011,
U. Maurer, Constructive cryptography - A new paradigm for security definitions and proofs, Theory of Security and Applications (TOSCA 2011).

