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Introduction

• Standard quantum key distribution (QKD) is limited to about 250 km due to losses in the optical
fiber.

•Quantum repeaters [Bri1998] permit to extend this distance by nested entanglement distillation and
entanglement swapping.

• The secret key rate (bits per memory per second) resulting from a quantum repeater is given by

K =
R r∞
M

, (1)

where

–R (repeater rate) is the average number of generated entangled pairs per second,

– r∞ is the secret fraction, i.e., the ratio of the secret bits and the measured bits in the asymptotic
limit (Devetak-Winter bound 1− S(X|E)−H(X|Y )),

–M is half the number of used memories per repeater node.

•We investigate the quantum repeater with encoding [Jia2009] in the context of quantum key dis-
tribution and compare it to the quantum repeater using distillation, as the former does not require
classical communication.

Generic quantum repeater

Fig. 1: A generic quantum repeater protocol
[Bri1998] with maximal nesting level N and k

rounds of distillation in all nesting levels.

• Problem: classical communication is needed for
acknowledging the success of entanglement dis-
tribution, distillation and swapping.

Quantum repeater with

encoding

Fig. 2: Repeater protocol with encoding, from
[Jia2009].

•Advantage: classical communication is only
needed for acknowledging the success of entan-
glement entanglement distribution and in the end
for communicating the Pauli frame.

•Disadvantage: many logical gates are needed.

QR with encoding: remote CNOT and error models
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Fig. 3: Remote CNOT for the quantum repeater
with encoding, adapted from [Jia2007].

Assumptions:

•One-qubit operations are error free,

• error model for two-qubit operations (depolariz-

ing map): Orealρ = pGO
idealρ + 1−pG

4 1,

• Bell pairs are depolarized:

ρDep(F0) := F0Π|φ+〉 +
1− F0

3

(

Π|φ−〉 + Π|ψ+〉 + Π|ψ−〉

)

.

•Application of multiple two-qubit gates and neglecting errors of order β2 = (1 − pG)
2 and higher

leads to
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,

where op = {Um, ..., U1} is the list of gates and f (i, ρ, A) := tri

(

AρA†
)

⊗ 1i
4 .

The repeater rate

•Average number of attempts to connectm pairs, each generated with probability P0 (P0 = 10−αL0/10

is the probability that a photon is not absorbed at a distance L0 = L/m) and deterministic entan-
glement swapping [Ber2011]:

Zm(P0) :=
m
∑

j=1

(

m

j

)

(−1)j+1

1− (1− P0)j
. (2)

Generic Quantum Repeater

• The repeater rate including the classical commu-
nication time can be found in [Bra2013].

•Using distillation and no classical communication
time the rate is [Abr2013]:

RRep =
1

2T0

(

2

3

)N+
∑

n kn

P0

N
∏

n=1

PES(n)

kn
∏

i=0

PO
D (i, n), (3)

Quantum repeater with encoding

• For deterministic swapping:

RQEC =
1

T0Znm(P0)
, (4)

with n being number of physical qubits to encode
one logical qubit.

PO
D(i, n) is the success probability in the i-th distillation round and n-th nesting level for the Oxford

protocol [Deu1996], T0 = L0/c (c is the speed of light in the optical fiber), and PES(n) is the success
probability of entanglement swapping in the n-th nesting level.

Memories

Quantum repeater with distillation:

•Number of needed memories depend on the distillation protocol:

– recursive protocol (Oxford protocol [Deu1996]): MO = 2
∑

i ki,

– entanglement pumping (Innsbruck protocol [Due1999]): MI = N + 2− |{ki : ki = 0}|.

Fig. 4: Entanglement pumping (Dür et al. protocol [Due1999]) with k = 3 rounds of purification.

• For optimality of the distillation protocols and strategies see [Bra2013].

Quantum repeater with encoding

•Number of memories used here is Menc = 2n (overhead for the remote CNOT).

Results: optimal repeater protocol
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Fig. 5: Optimal quantum repeater protocols w.r.t.
the secret key rate per memory per second for
N = 1 in terms of the initial fidelity F0 and the

gate quality pG.

•Here: distillation only in the end (~k = {0, k})
with protocols Oxford (O) and Innsbruck (I);
quantum repeater with encoding (QEC) for the
three-qubit repetition code (n = 3).

• The number of generated Bell pairs is kept the
same, in case of the QEC it is 3, for distillation
either 2 (for k = 1) or 4 (for k = 2).

• The total distance is L = 600 km.

• For initial fidelities F0 ≤ 0.85 the QEC is opti-
mal.

• For an initial fidelity above F0 = 0.92, no distil-
lation is optimal.

• The Innsbruck protocol is not optimal for this
set of parameters, but it was shown in [Bra2013]
that this can be achieved for other parameters.

Results: optimal secret key rate
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Fig. 6: Optimal secret key rate per memory per
second for the quantum repeater protocols

(N = 1) shown above in terms of the initial fidelity
F0 and the gate quality pG.

• The generation of a non-zero secret key rate for
N = 1 at a distance of L = 600 km is limited to
very good gates and good initial fidelities.

• For having good gates (pG ≥ 0.98), but modest
fidelities (F0 ≤ 0.8), we can still obtain a secret
key rate per memory per second on the order of
10−4.

Discussion

•We calculated the secret key rate per memory per second by comparing two approaches for the
quantum repeater: either using distillation or using quantum error correction.

•We found that for modest fidelities (F0 ≤ 0.8) we can still obtain a non-zero secret key rate, but we
require good gates (pG ≥ 0.98).

• Future work includes the extension of these calculations to higher nesting levels (more swappings)
and other error correcting codes.
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