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Introduction: Ground–Satellite Quantum Key Distribution

• Transmission losses limit terrestrial QKD and quantum science experiments to distances of order 400 km [1, 2].

• To overcome terrestrial limits: Use a satellite as a trusted node, making a global QKD network.

• Satellite QKD is feasible, either as a quantum downlink or an uplink [3, 4].
• Uplink (receiver onboard satellite) is less efficient than downlink, but has several advantages:

• Simpler satellite design
• Lower power, computational, and memory requirements

• Flexibility with the quantum source
• Allowing wider scope for science experiments

• Canadian Space Agency studies culminated in the Quantum EncrYption and Science Satellite (QEYSSat)
proposal:
• A single microsatellite in noon-midnight low Earth orbit, h ≈ 600km.
• Uplink, polarization-encoded single photons, λ ≈ 800nm.
• Receiver telescope diameter Dr ≈ 40cm.

• Here we outline recent and ongoing laboratory studies towards demonstrating the feasibility of quantum receiver
technology for ground–satellite links. We:
1. Analyze the optical link efficiency
2. Develop and analyze a quantum-signal-based polarization

alignment protocol

3. Demonstrate full QKD in the high-loss regime of a satellite
4. Investigate the possibility of QKD via diffusive-screen reflection
5. Pursue QKD demonstrations with a moving receiver

1. Comprehensive Ground–Satellite Link Analysis
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We have developed a comprehensive ground–satellite quantum link
model [4] that takes into account:
• Entangled and weak coherent pulse quantum states
• Transmission wavelength and pulse frequency
• Transmitter and receiver telescope sizes and fields of view
• Up- or down-link propagation
• Realistic orbital data
• Atmospheric transmittance and turbulence
• Diffraction, optical losses, and pointing error
• Ground site location and local light pollution
• Detector dark counts, Earth’s thermal radiation, and reflected moonlight
• Detector inefficiencies and cloud cover

Top-left: Schematic of the up-link scenario to an orbiting satellite. Left:
Example orbit passes over a ground station: best (blue), upper-quartile
(green), and median (red) passes shown. Bottom-left: Determined loss
and background for an uplink for each pass. Bottom-centre:
Accumulated secure key length after one month of operation with a
300 MHz weak coherent pulse source, for various transmitter and receiver
telescope sizes. Bottom-right: Accumulated secure key length after one
month of operation with a 100 MHz entangled pair source.

40

60

80

100

L
os
s
[d
B
]

0 100 200 300 400 500

Time [s]

250

500

750

1000 B
ackgrou

n
d
C
ou

n
t
R
ate

[cp
s]

Loss – Median pass
Loss – Upper quartile pass
Loss – Best pass

Background – Median pass
Background – Upper quartile pass
Background – Best pass

0.2
0.4

0.6
0.8

1

0
0.1

0.2
0.3

0.4
0.5

0

2

4

6

8

10

12

x 10
6

Transmitter [m]Receiver [m]

K
ey

 p
er

 m
on

th
 [b

it]

0.2
0.4

0.6
0.8

1

0
0.1

0.2
0.3

0.4
0.5

0

0.5

1

1.5

2

x 10
6

Transmitter [m]Receiver [m]

K
ey

 p
er

 m
on

th
 [b

it]

2. Polarization Alignment Based On QKD Signals

High-bandwidth BB84/BBM92 relies on accurate polarization alignment of transmitter and receiver, which
birefringence and relative orientation will perturb. Classical solutions may be sufficient, but is it possible to align
well only with the quantum signal?

We’ve developed and assessed the performance of a straightforward automated polarization alignment protocol:

Unknown polarization rotation
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1. A set of known states are sent to the receiver (these can
be e.g. standard QKD states)

2. The receiver collects complete-basis? measurement stats.
3. A compensation unitary is determined and applied, via a

quarter-, half-, quarter-wave plate triplet
?Conveniently, the requisite change of basis can be achieved using the same wave plate triplet.
We perform 224 Monte-Carlo simulations of this protocol, quantifying performance by visibility reduction:
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Above: Invisibility of QKD states after compensation, mean (left), std. dev. (centre), and kurtosis (right).

Unknown polarization rotation
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Moreover, we can reverse the protocol by considering
measurements as post-selections. Here the source produces
complete-basis states, the receiver measures in QKD states,
and compensation is applied just before leaving the source.
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Above: Invisibility of QKD states after compensation in the reversed protocol.

Conclusion: Merely a few hundred photons are sufficient to establish high visibility for QKD.

3. Experimental High-Loss QKD

Our previous work demonstrated the feasibility of QKD with ∼50 dB loss [5]. Here we develop and demonstrate
a complete QKD system, with chosen algorithms tailored to suit a satellite receiver.
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Raw key rate QBER • Top-left: Schematic of the
apparatus.

• Top-right: Picture of the receiver.
• Left: Measured raw key rate and

QBER for varying losses.
• Right: Extracted secure key

rates, given various assumptions,
for various losses.
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We achieve QKD with up to 56 dB of loss while including finite-size effects over 20 min collection.

Further, we take this apparatus and vary the loss over time, fitting appropriately such that we construct data
corresponding with realistic orbit losses (see left): best, upper-quartile, and median, below.
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Performing QKD post-processing on these data, we obtain 29423 bits of secure key from a single best pass,
12784 bits from a single upper quartile pass, and 512 bits from a single median pass, including finite-size effects
(10σ ). (Notably, by combining 2 median passes we generated 4071 secure bits.)

4. High-Loss QKD Spin-off: Diffusive Screen QKD

We are investigating a possible
spin-off for high-loss-tolerant QKD:
via a diffusive screen. This could
allow the development of simple,
wireless, multi-access QKD
hot-spots for mobile devices.
Right: Measured loss profiles of 3
diffusive screen samples (2
reflective, 1 transmissive; 1 cm
receiver).
Detector degradation prevents us
from performing this experiment
presently; new detectors with low
dark counts are on the way.
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5. In Progress: QKD With A Receiver In Motion

We are presently working to
demonstrate QKD with a moving
platform. QKD from a moving
transmitter has recently been
demonstrated [6, 7], but QKD to a
moving receiver (as in the
QEYSSat proposal) has not.

Our transmitter is located in the dome (above) on the roof of the RAC
building, North Campus, with optical access across the surrounding
fields. (The source is located in our lab on the ground floor of RAC.)
Our receiver (top right) is mounted on a two-axis motorized pointing
stage and platform. A diode laser triplet (850 nm) acts as a beacon,
with CMOS camera and custom software tracking a duplicate beacon
received from the transmitter. This apparatus will then be placed in the
tray of a truck (bottom right) and driven, ∼600 m distant to the
transmitter, at ≈1 ◦s−1 relative to the transmitter, simulating the 0.1 ◦s−1

to 0.7 ◦s−1 motion of a satellite pass.

Conclusion

We have demonstrated successful QKD in a high-loss regime (3) commensurate with the losses expected of
a typical satellite uplink (1). With experiments making use of quantum-signal-facilitated polarization alignment (2),
current and further work (5) affirms the feasibility of satellite QKD and potential spin-off technologies (4).
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