A high-speed multi-protocol quantum key distribution transmitter based on a dual-drive modulator

<u>Boris Korzh,</u> Nino Walenta, Raphael Houlmann, Hugo Zbinden

GAP-Optique University of Geneva

QCrypt Conference Waterloo, Canada August 8th 2013

Swiss National Science Foundation

Outline

- Motivation
 - Network QKD
 - Possible need for multi-protocol capability
- Protocol overview
- State preparation
- Transmitter performance
 - Characterization
 - QKD
 - Stability
- Conclusion

Motivation – Network QKD

- Ħ
- M. Sasaki et. al., *"Field test of quantum key distribution in the Tokyo QKD network*," Opt. Express 19, 10387–10409 (2011)
- D. Stucki et. al., "Long-term performance of the SwissQuantum quantum key distribution network in a field environment," New J. Phys. 13, 123001 (2011)
- M. Peev, et. al., "*The SECOQC quantum key distribution network in Vienna*," New J. Phys. 11, 075001 (2009)

Reconfigurable Networks

- No need for trusted nodes
- Active optical switching
- Passive optical switching

- Vicente Martín Quantum information workshop 2010, Kjeller
- T. E. Chapuran, et. al., "*Optical networking for quantum key distribution and quantum communications*," New J. Phys. 11, 105001 (2009)
- D. Lancho, J. Martinez-Mateo, D. Elkouss, M. Soto, and V. Martin, "QKD in standard optical telecommunications networks," in 1st Int. Conf. on Quantum Communication and Quantum Networking (2010), vol. 36, pp. 142–149

Quantum Metro Network

- Wavelength addressable
- All-to-all communication
- Resembles commercial optical networks
 - Core ring
 - Access network

Poster: A. Ciurana, J. Martinez-Mateo, A. Poppe, N. Walenta, H. Zbinden, and V. Martin, "Quantum Metropolitan Area Network based on Wavelength Division Multiplexing"

Different protocols?

- Different losses
 - Optimum protocol?
- Different environmental effects
- Commercial systems
 - Rarely the same
 - Patents
- So far systems require dedicated transmitters and receivers

Different protocols?

- All people might want to communicate
- Potential need to move to multi-protocol capability
- Aim
 - Develop a multi-protocol transmitter

Families of Protocols

- Discrete variable
- BB84
 SARG
 B92
 Distributed-phase reference
 COW
 DPS
- Continuous variable
- Measurement device independent
- Device independent

• V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lütkenhaus, and M. Peev, "*The security of practical quantum key distribution*," Rev. Mod. Phys. 81, 1301–1350 (2009)

Live demonstration in the industrial exhibit areaReal-time post processing

- One-time pad encryption or 100 Gbps AES
- D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, "*Fast and simple one-way quantum key distribution*," Appl. Phys. Lett. 87, 194108 (2005)
- C. Branciard, N. Gisin, and V. Scarani, "Upper bounds for the security of two distributed-phase reference protocols of quantum cryptography," New J Phys. 10, 013031 (2008)

Differential phase shift

• CW laser with pulse carver or mode-locked laser required

33

- K. Inoue, E. Waks, and Y. Yamamoto, "*Differential phase shift quantum key distribution*," Phys. Rev. Lett. 89, 037902 (2002)
- Yasuhiro Tokura and Toshimori Honjo, "Differential Phase Shift Quantum Key Distribution (DPS-QKD) Experiments", NTT Technical review, www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201109fa8.html

Time-phase BB84

Requires matched interferometers at Alice and Bob
Inherently phase randomized

- K. Yoshino, et. al., "Dual-mode time-bin coding for quantum key distribution using dual-drive Mach-Zehnder modulator," in 33rd European Conference and Exhibition of Optical Communication (ECOC, 2007), pp. 1–2 (2007)
- K. Yoshino, et. al. "*High-speed wavelength-division multiplexing quantum key distribution system*," Opt. Lett. 37, 223–225 (2012)
- A. Tomita, et. al., "*High speed quantum key distribution system*," Opt. Fiber Technol. 16, 55 62 (2010)

New transmitter

- Simplified version
- 1 Electo-optic modulator
 - Phase and intensity control
- No interferometer at Alice

Dual-drive modulator

State preparation

COW (a)	Z0	Z1	Decoy	DPS (b)	$X0_1$	$X0_2$	$X1_1$	$X1_2$	BB84 (c)	Z0	Z1	X0	<i>X</i> 1
$V_{ m RF,1}$	$+V_{\pi/2}$	$-V_{\pi/2}$	$+V_{\pi/2}$	$V_{ m RF,1}$	$+V_{\pi}$		$+V_{\pi}^{-}$	$-+V_{\pi}$	$V_{ m RF,1}$	$+V_{\pi/2}$	$\overline{+}V_{\pi/2}$	$+V_{\pi/2}$	$+V_{\pi/2}^{-}$
$V_{ m RF,2}$	$-V_{\pi/2}$	$-V_{\pi/2}$	$-V_{\pi/2}$	$V_{ m RF,2}$		$+V_{\pi}$	- $+V_{\pi}$	$+V_{\pi}^{-}$	$V_{ m RF,2}$	$-V_{\pi/2}$	$-V_{\pi/2}$		$+V_{\pi/2}$
$\left \psi ight angle_{n}$			O	$\left \psi ight angle_{n}$	0	O	$\left(\begin{array}{c} \pi \end{array} \right)$	$\left(\begin{array}{c} \pi \end{array} \right)$	$\left \psi ight angle_{n}$			0 0 0	$\widehat{\square}$

• All states necessary can be produced

Pulse shape

- Pulses after the dual-drive modulator
- 90 ps (fwhm)
- Linear scale

• Extinction ratio

- >27 dB
- Less than 0.2% QBER in time basis
- Logarithmic scale

Pulse shape

Clock frequency optimization

- 20 MHz clock accuracy corresponds to
 - 0.01% QBER

Multi-protocol test platform

SPD

(a)

Bob COW

Specifications

- Polarization insensitive
- Interferometer path difference independent

33

Detectors

• T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden," Free-running single-photon detection based on a negative feedback InGaAs APD," J. Mod. Opt. 59, 1481–1488 (2012)

QKD engine

Error estimation

Error correction

Error verification

Privacy amplification

Authentication

Timing and base information Direct comparison or sampling LDPC forward error correction Universal hashing Toeplitz hashing Polynomial hashing

- 1.25 GHz
- FPGA distillation engine
- Block length 10⁶
- Most tasks are protocol independent

Poster: Nino Walenta, et. al. "*Continuous coherent-one way QKD and data encryption at up to 100 Gbits/s*", Industrial exhibit area, QCrypt 2013.

COW performance

With dark counts

- QBER < 1.5%
- Phase error < 2%

- C. Branciard, N. Gisin, and V. Scarani, "*Upper bounds for the security of two distributed-phase reference protocols of quantum cryptography*," New J Phys. 10, 013031 (2008)
- M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, *"Tight finite-key analysis for quantum cryptography*," Nature Commun. 3 (2012)

DPS performance

With dark counts

 Phase error 2% (min)

• E. Waks, H. Takesue, and Y. Yamamoto, "Security of differential-phase-shift quantum key distribution against individual attacks," Phys. Rev. A 73, 012344 (2006)

BB84 Performance

With dark counts

- QBER < 1%
- Phase error < 2%

• H.-K. Lo and J. Preskill, "Security of quantum key distribution using weak coherent states with nonrandom phases," Quantum Info. Comput. 7, 431–458 (2007)

Measure of transmitter performance

• Subtracting dark counts

Protocol	Phase basis	Time basis
	$QBER_{opt}$	$QBER_{opt}$
DPS	$1.83 \pm 0.19\%$	N/A
COW	$0.92 \pm 0.41\%$	$0.89 \pm 0.08\%$
BB84	$1.51 \pm 0.16\%$	$0.58 \pm 0.06\%$

System stability

Automatic tracking of QBER and Visibility

- Modulator bias voltage
- Laser current

- Demonstrated multi-protocol transmitter
 - No interferometer
 - 1.25 GHz (flexible)
 - Crucial for addressing different receivers
 - Easily stabilized
 - Performance comparable to protocol dedicated transmitters
- Further development
 - Decoy state preparation
 - Phase randomization
 - Full integration with high speed QKD platform

Thank you

Nino Walenta Raphael Houlmann Olivier Guinnard Charles Ci Wen Lim Hugo Zbinden

arXiv:1306.5940 [quant-ph]

To be published in Optics Express

Antonio Ruiz-Alba

Swiss National Science Foundation

swiss scientific initiative in health / security / environment systems