Building one-time memories from isolated qubits

Yi-Kai Liu

National Institute of Standards and Technology Gaithersburg, MD, USA

Cryptography in a quantum world

- Bit commitment, oblivious transfer => secure 2-party computation
- Alas, BC and OT are impossible in a quantum world (if one wants unconditional security)
- Salvail '98: quantum bit-commitment is possible, if one assumes the adversary is k-local

This talk

- Revisit these ideas, in a different context: tamper-resistant cryptographic hardware
- "Isolated qubits"
 - Only allow local operations & classical communication (LOCC)
- "One-time memories" (OTM's)
 - Like oblivious transfer, but non-interactive
- Use OTM's to build "one-time programs"
 - Computational black boxes (Goldwasser et al, 2008)

"Isolated qubits"

- Have n qubits
- Can only be accessed using n-partite LOCC operations

Classical communication Local operations

Classical communication

- Intuition: conflicting requirements for a quantum memory
 - (1) isolation from environment
 - (2) coherent interaction with an external probe
- Isolated qubits: achieve (1) and frustrate (2)
 - Concrete example: NV centers?

"Isolated qubits"

- Have n qubits
- Can only be accessed using n-partite LOCC operations

Classical communication Local operations Classical communication

Isolated qubits can exist in a world with quantum computers!

One-time memories (OTM's)

- An OTM contains two messages, s and t
 - Alice programs the OTM with (s,t), then gives it to Bob
 - Bob can choose to read either s or t, but not both
 - No other interaction between Alice and Bob
 - At least as powerful as oblivious transfer

Junkyardsparkle on Wikipedia http://en.wikipedia.org/wiki/File:DPDT_knife_switch_in_closed_position.jpg

Building an OTM

- "Conjugate coding" (Wiesner, 1970's)
 - Given two k-bit messages s, t
 - Choose two error-correcting codes C, D
 - Get two n-bit codewords C(s), D(t)
 - For each qubit i = 1,2,...,n, prepare a state that...
 - Returns information about C(s)_i when measured in the |0), 1) basis
 - Returns information about D(t)_i when measured in the |+),|-) basis

Building an OTM

- This is not secure against general quantum adversaries
 - There exists a joint measurement on all the qubits that recovers both messages simultaneously
 - "Run the classical decoding algorithm on a superposition of inputs"
- But it may be secure in the isolated qubits model...
 - Honest strategies require only LOCC operations
 - Cheating strategy requires entangling gates?
 - Caveat: adversary may be able to obtain partial information about both messages

A weaker definition of security

- Assume messages S,T are uniformly distributed
- For any LOCC adversary that receives the OTM and outputs classical information Z,
 - Require $H^{\varepsilon}_{\infty}(S,T|Z) \ge (1-\delta)k$
 - Adversary is allowed to learn partial information about both S and T
- Call these "weak OTM's"
 - Does our contruction yield weak OTM's? (Maybe)
 - Are weak OTM's sufficient to construct one-time programs? (Probably)

One-time programs

- A one-time program is a set of software and hardware that lets you run a program <u>once</u>
 - Alice chooses a circuit C, prepares an OTP, and gives it to Bob
 - Bob chooses an input x, runs the OTP, and obtains the output C(x)
 - OTP cannot be run again
 - Internal state of OTP is hidden

One-time programs

- One-time programs can be built using OTM's together with Yao's garbled circuits (Goldwasser et al, 2008)
- <u>Conjecture</u>: weak OTM's are good enough for this purpose
 - OTM's contain secret keys, which are chosen uniformly at random
 - Use leak-resistant encryption (Akavia et al 2006) => it's ok if the OTM's leak some information
 - Open problem: prove this rigorously?

Security of our OTM's

- Choose <u>random</u> error-correcting codes C, D
- Consider all <u>one-pass</u> LOCC adversaries
 - that use 2-outcome measurements
 - and output classical info Z
- <u>Theorem</u>: w/ high prob. (over C, D), for all such adversaries,
 - $I(Z; S,T) \le (1.9190)k + O(\sqrt{n \log n})$
 - Equivalently, $H(S,T|Z) \ge (0.081)k O(\sqrt{n \log n})$
 - Caveat: C, D are not efficiently decodable!
 - Caveat: H is Shannon entropy, not (smoothed) min-entropy!

Security of our OTM's

- Some issues to consider...
- Adversary knows everything at the beginning of the game
 - Contrast with QKD: honest parties keep some information secret, use it to do privacy amplification later
- Choice of C and D is crucial
 - Want them to be "unstructured" => choose them at random
- General LOCC adversaries are hard to analyze
 - Can make a long sequence of weak measurements
 - We only consider 1-pass LOCC adversaries

Proof techniques

- Step 1: for the first k steps of the adversary,
 - Consider all separable measurement outcomes M_A
 - Lower-bound the collision entropy $H_2(S,T|M_A)$
 - Use large-deviation bounds for locally dependent rv's
 - Union bound over all M_A
- Step 2: for the next k steps of the adversary,
 - Consider all decision trees representing the adversary
 - Upper-bound $I(Z_{k+1...2k}; S, T | M_A)$
 - Use Dudley's inequality for empirical processes
 - Prove that "similar" decision trees produce "similar" results
 - Cover the set of decision trees with ε-nets at varying resolution

Related work

- Quantum bit-commitment secure against k-local adversaries (Salvail '98)
- Bounded / noisy storage model (Damgaard et al, Wehner et al)
- Data-hiding states (DiVincenzo et al, ...)
- Unforgeable quantum tokens (Pastawski et al) today
- Quantum networks using NV centers (Childress) Thursday
- Quantum one-time programs (Broadbent et al) Friday

Outlook

- This talk
 - Isolated qubits model
 - One-time memories based on conjugate coding (our main result)
 - One-time programs based on Yao's garbled circuits (Goldwasser et al, 2008)
- Can we prove a stronger security guarantee for our OTM's?
 - Get tighter bounds?
 - Use efficiently-decodable codes?
 - Prove security against general LOCC adversaries?
 - Prove composable security (using the (smoothed) minentropy)?