High-Performance Sum-Product Decoding of Quasi-Cyclic LDPC Codes Christoph Pacher[†], Bernhard Ömer

[†] Christoph.Pacher@AIT.ac.at

Safety & Security Department, AIT Austrian Institute of Technology GmbH, 1220 Vienna, Austria

SUMMARY

We present a highly optimized modification of the Sum-Product Algorithm for LDPC decoding for CPUs which achieves the same decoding properties as the original algorithm but offers a throughput on a CPU that is comparable to GPU implementations using hundreds of GPU cores. To achieve this improvement we make use of i) quasi-cyclic LDPC codes and vectorized SSE commands, ii) interleaved variable/check node processing, and iii) concurrent use of Log-Likelihood Ratio and Log-Likelihood Difference representations and fast conversion between them. For typical parameters we can achieve a throughput of approx. 40 Mbit/s on a quad-core CPU.

1 SUM-PRODUCT DECODING OF LDPC CODES

- A Low-Density Parity-Check (LDPC) code [1] can be defined by its sparse parity-check matrix H: The null-space of the parity-check matrix defines the set of all codewords: $C = \{ \boldsymbol{x} \in \{0, 1\}^n : \boldsymbol{x} \mathbb{H}^T = \boldsymbol{0} \}.$
- The iterative sum-product algorithm (SPA) efficiently solves the NP-hard maximum-likelihood decoding problem of finding the codeword with the minimum Hamming distance to a received word in good approximation.

2 OPTIMIZING CHECK NODE & VARIABLE NODE UPDATES

Algorithm 1: Interleaved Sum-Product Algorithm		
initialize_c2v() /* check \rightarrow variable	*/;	
initialize_vsum();		
for iter = 1 to max_iter do		
<pre>for checknode = 1 to number_of_checknodes do</pre>		
csum=0;		

	for edge = 1 to degree(checknode) do	
	variablenode = adjancency_list(checknode, edge);	
	vsum(variablenode)-= <mark>c2v(checknode, edge)</mark> ;	
	v2c(edge)=LLR2LLD(vsum(variablenode));	
	csum += <mark>v2c(edge)</mark> ;	
	for edge = 1 to degree(checknode) do	
	variablenode = adjancency_list(checknode, edge);	
	<pre>c2v(checknode, edge)=LLD2LLR(csum-v2c(edge));</pre>	
	<pre>vsum(variablenode)+= c2v(checknode, edge)/* restore vsum</pre>	*/;
	if converged() then	
	return <i>iter</i> ;	
re	eturn ERROR;	

We use Quasi-Cyclic codes:

- each variable and check node is replaced by a vector of nodes,
- each 1 in the parity check matrix is replaced by a rotation matrix with random offset.

Vectorized (parallel) operations are used: 4 x int32_t and 4 x float32_t on 128 bit registers (SSE, SSE2 extension) for arithmetic and shift operations. Bit operations are bit-sliced using 64 bit all-purpose registers.

3 TRANSFORMING BETWEEN LLR AND LLD

4 FAST APPROXIMATIONS FOR $\log_2 AND 2^x$

Fast $y' \approx y = \exp_2(x) = 2^x$ operation: Input: 32 bit fixed point number x (stored in int32_t). Output: 32 bit IEEE 754 floating point number $y' \approx 2^x$. Algorithm (based on [2]): • shift x to the left by 7 bit: $x \ll 7$;

Two domains for probabilities/likelihoods are used:

- ► Log-Likelihood Ratio: $LLR(p) = \log_2\left(\frac{1-p}{p}\right)$
- ▶ Signed Log-Likelihood Difference: $LLD(p) = sign(2p 1) \log_2 |2p 1|$.
- Fransformation between LLR(p) and LLD(p)

$$|LLR(p)| = \gamma(|LLD(p)|),$$

$$|LLD(p)| = \gamma(|LLR(p)|),$$

$$\operatorname{sign}(LLR(p)) = \operatorname{sign}(LLD(p))$$

► Transform

$$\gamma(x) = -\log_2(\tanh_2(x/2)) = \log_2\left(\frac{2^x + 1}{2^x - 1}\right) = \log_2\left[1 + \left(2^{x-1} - \frac{1}{2}\right)^{-1}\right]$$

Note, that γ is an involution, i.e. $\gamma^{-1}(x) = \gamma(x) \Rightarrow \gamma(\gamma(x)) = 1$. We use the fast approximations (see box 4) for \log_2 and 2^x (red curve).

- ► add an offset of 127 to the exponent: x += 0x3f800000;
- interpret the result as float (using a union) y'
- The last step is no actual operation, as it is just interpreting the memory content as float.

Above algorithm calculates (if x > 0) $y' = 2^{\lfloor x \rfloor} \times (1 + \operatorname{fract}(x))$ (red curve).

Figure: Approximated (red) and exact (black) $\gamma(x)$. $\gamma(\gamma(x))$ is shown (green) to demonstrate that the approximated $\gamma(x)$ is very close to an involution for relevant inputs.

Fast $x' \approx x = log_2(y)$ operation: Input: float y, operations performed in opposite order. Output: 32 bit fixed point number *x*.

5 SIMULATION RESULTS

- Despite the approximations made for $\gamma(\cdot)$, the error correction performance matches that of the classical Sum-Product Algorithm.
- The throughput is approximately **100 MBit/s per decoder iteration** on a single CPU core (2.5 GHz)!
- For $\overline{iter} = 10$ on a quad-core cpu,
- we achieve 40 Mbit/s throughput.

REFERENCES

- R G Gallager, *Low-density parity-check codes*, [1] IEEE Transactions on Information Theory 8, 21–28 (1962).
- P Mineiro, *fastapprox*, [2]

http://code.google.com/p/fastapprox/.

ACKNOWLEDGEMENTS

VIENNA SCIENCE AND TECHNOLOGY FUND