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SUMMARY

We present a highly optimized modification of the Sum-Product Algorithm for LDPC decoding for CPUs which achieves the same decoding properties as the original
algorithm but offers a throughput on a CPU that is comparable to GPU implementations using hundreds of GPU cores. To achieve this improvement we make use of i)
quasi-cyclic LDPC codes and vectorized SSE commands, ii) interleaved variable/check node processing, and iii) concurrent use of Log-Likelihood Ratio and Log-Likelihood
Difference representations and fast conversion between them. For typical parameters we can achieve a throughput of approx. 40 Mbit/s on a quad-core CPU.

1 SUM-PRODUCT DECODING OF LDPC CODES

I A Low-Density Parity-Check (LDPC) code [1] can be defined by its sparse
parity-check matrix H: The null-space of the parity-check matrix defines the
set of all codewords: C =

{
x ∈ {0, 1}n : xHT = 0

}
.

I The iterative sum-product algorithm (SPA) efficiently solves the NP-hard
maximum-likelihood decoding problem of finding the codeword with the
minimum Hamming distance to a received word in good approximation.
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Cv = set of check-nodes adjacent to v ,
Vc = set of variable-nodes adjacent to c.

2 OPTIMIZING CHECK NODE & VARIABLE NODE UPDATES

Algorithm 1: Interleaved Sum-Product Algorithm
initialize_c2v() /* check → variable */ ;
initialize_vsum();
for iter = 1 to max_iter do

for checknode = 1 to number_of_checknodes do
csum=0;
for edge = 1 to degree(checknode) do

variablenode = adjancency_list(checknode, edge);
vsum(variablenode)-= c2v(checknode, edge);
v2c(edge)=LLR2LLD(vsum(variablenode));
csum += v2c(edge);

for edge = 1 to degree(checknode) do
variablenode = adjancency_list(checknode, edge);
c2v(checknode, edge)=LLD2LLR(csum-v2c(edge));
vsum(variablenode)+= c2v(checknode, edge)/* restore vsum */ ;

if converged() then
return iter ;

return ERROR;

We use Quasi-Cyclic codes:
I each variable and check node is replaced by a vector of nodes,
I each 1 in the parity check matrix is replaced by a rotation matrix with random

offset.
Vectorized (parallel) operations are used: 4 x int32_t and 4 x float32_t on 128 bit
registers (SSE, SSE2 extension) for arithmetic and shift operations.
Bit operations are bit-sliced using 64 bit all-purpose registers.

3 TRANSFORMING BETWEEN LLR AND LLD

Two domains for probabilities/likelihoods are used:
I Log-Likelihood Ratio: LLR(p) = log2

(
1−p

p

)
I Signed Log-Likelihood Difference: LLD(p) = sign(2p − 1) log2 |2p − 1|.
I Transformation between LLR(p) and LLD(p)

|LLR(p)| = γ(|LLD(p)|),
|LLD(p)| = γ(|LLR(p)|),

sign(LLR(p)) = sign(LLD(p))

I Transform

γ(x) = − log2(tanh2(x/2)) = log2

(
2x + 1
2x − 1

)
= log2

[
1 +

(
2x−1 − 1

2

)−1
]

Note, that γ is an involution, i.e. γ−1(x) = γ(x)⇒ γ(γ(x)) = 1.
We use the fast approximations (see box 4) for log2 and 2x (red curve).
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Figure: Approximated (red) and exact (black) γ(x). γ(γ(x)) is shown (green) to demonstrate that
the approximated γ(x) is very close to an involution for relevant inputs.

4 FAST APPROXIMATIONS FOR log2 AND 2X

I Fast y ′ ≈ y = exp2(x) = 2x operation:
Input: 32 bit fixed point number x (stored in int32_t).
Output: 32 bit IEEE 754 floating point number y ′ ≈ 2x .
Algorithm (based on [2]):
I shift x to the left by 7 bit: x �= 7;
I add an offset of 127 to the exponent: x += 0x3f800000;
I interpret the result as float (using a union) y ′

The last step is no actual operation, as it is just interpreting the memory
content as float.
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The exact result would be y = 2x (black curve).
Above algorithm calculates (if x > 0) y ′ = 2bxc × (1 + fract(x)) (red curve).

I Fast x ′ ≈ x = log2(y) operation:
Input: float y , operations performed in opposite order.
Output: 32 bit fixed point number x .

5 SIMULATION RESULTS
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I Despite the approximations made
for γ(·), the error correction
performance matches that of the
classical Sum-Product Algorithm.

I The throughput is approximately
100 MBit/s per decoder iteration
on a single CPU core (2.5 GHz)!

I For iter = 10 on a quad-core cpu,
we achieve 40 Mbit/s throughput.
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