## High-Performance Sum-Product Decoding of Quasi-Cyclic LDPC Codes <br> \section*{Christoph Pacher ${ }^{\dagger}$, Bernhard Ömer}

${ }^{\dagger}$ Christoph. Pacher@AIT . ac.at
Safety \& Security Department, AIT Austrian Institute of Technology GmbH, 1220 Vienna, Austria

## SUMMARY

We present a highly optimized modification of the Sum-Product Algorithm for LDPC decoding for CPUs which achieves the same decoding properties as the original algorithm but offers a throughput on a CPU that is comparable to GPU implementations using hundreds of GPU cores. To achieve this improvement we make use of i) quasi-cyclic LDPC codes and vectorized SSE commands, ii) interleaved variable/check node processing, and iii) concurrent use of Log-Likelihood Ratio and Log-Likelihood Difference representations and fast conversion between them. For typical parameters we can achieve a throughput of approx. $40 \mathrm{Mbit} / \mathrm{s}$ on a quad-core CPU

## 1 SUM-PRODUCT DECODING OF LDPC CODES

- A Low-Density Parity-Check (LDPC) code [1] can be defined by its sparse parity-check matrix $H$ : The null-space of the parity-check matrix defines the set of all codewords: $\mathcal{C}=\left\{\boldsymbol{x} \in\{0,1\}^{n}: \boldsymbol{x} H^{T}=\mathbf{0}\right\}$
- The iterative sum-product algorithm (SPA) efficiently solves the NP-hard maximum-likelihood decoding problem of finding the codeword with the minimum Hamming distance to a received word in good approximation.

Variable Nodes
(LLR)
Check Nodes
(LLD)


Iterative algorithm - Update Rules

$$
\begin{aligned}
& L L R_{\mathrm{v} 2 \mathrm{c}}(v, c)=L L R_{c h}(v)+\sum_{c^{\prime} \in \mathcal{C}_{\checkmark} \backslash\{c\}} L L R_{\mathrm{c} 2 \mathrm{v}}\left(v, c^{\prime}\right) \\
& L L D_{\mathrm{C} 2 \mathrm{~V}}(v, c)=\prod_{v^{\prime} \in \mathcal{V}_{c} \backslash\{v\}} \operatorname{sign} L L D_{\mathrm{v} 2 \mathrm{c}}\left(v^{\prime}, c\right) \sum_{v^{\prime} \in \mathcal{V}_{c} \backslash\{v\}}\left|L L D_{\mathrm{v} 2 \mathrm{c}}\left(v^{\prime}, c\right)\right|
\end{aligned}
$$

$\mathcal{C}_{v}=$ set of check-nodes adjacent to $v$,
$\mathcal{V}_{c}=$ set of variable-nodes adjacent to $c$.

## 3 TRANSFORMING BETWEEN LLR AND LLD

Two domains for probabilities/likelihoods are used:

- Log-Likelihood Ratio: $\operatorname{LLR}(p)=\log _{2}\left(\frac{1-p}{p}\right)$
- Signed Log-Likelihood Difference: $\operatorname{LLD}(p)=\operatorname{sign}(2 p-1) \log _{2}|2 p-1|$.
- Transformation between $\operatorname{LLR}(p)$ and $L L D(p)$

$$
\begin{aligned}
|\operatorname{LLR}(p)| & =\gamma(|\operatorname{LLD}(p)|), \\
|\operatorname{LLD}(p)| & =\gamma(|\operatorname{LLR}(p)|), \\
\operatorname{sign}(\operatorname{LLR}(p)) & =\operatorname{sign}(\operatorname{LLD}(p))
\end{aligned}
$$

- Transform

$$
\gamma(x)=-\log _{2}\left(\tanh _{2}(x / 2)\right)=\log _{2}\left(\frac{2^{x}+1}{2^{x}-1}\right)=\log _{2}\left[1+\left(2^{x-1}-\frac{1}{2}\right)^{-1}\right]
$$

Note, that $\gamma$ is an involution, i.e. $\gamma^{-1}(x)=\gamma(x) \Rightarrow \gamma(\gamma(x))=1$.
We use the fast approximations (see box 4 ) for $\log _{2}$ and $2^{x}$ (red curve).


Figure: Approximated (red) and exact (black) $\gamma(x) . \gamma(\gamma(x))$ is shown (green) to demonstrate that the approximated $\gamma(x)$ is very close to an involution for relevant inputs.

## 5 SIMULATION RESULTS



- Despite the approximations made for $\gamma(\cdot)$, the error correction performance matches that of the classical Sum-Product Algorithm.
- The throughput is approximately $100 \mathrm{MBit} / \mathrm{s}$ per decoder iteration on a single CPU core ( 2.5 GHz )!
- For $\overline{\text { iter }}=10$ on a quad-core cpu, we achieve $40 \mathrm{Mbit} / \mathrm{s}$ throughput.


## 2 OPTIMIZING CHECK NODE \& VARIABLE NODE UPDATES

Algorithm 1: Interleaved Sum-Product Algorithm
initialize_c2v() /* check $\rightarrow$ variable
initialize_vsum();
for iter $=1$ to max_iter do
for checknode $=1$ to number_of_checknodes do
csum=0;
for edge $=1$ to degree(checknode) do
variablenode = adjancency_list(checknode, edge);
vsum(variablenode)-=
v2c(edge)=LLR2LLD(vsum(variablenode));
csum += v2c(edge);
for edge $=1$ to degree(checknode) do variablenode = adjancency_list(checknode, edge);
C2v(checknode, edge)=LLD2LLR(csum-v2c(edge));
vsum(variablenode)+= C2v(checknode, edge)/* restore vsum */;
if converged() then
return iter;
return $E R R O R$
We use Quasi-Cyclic codes:

- each variable and check node is replaced by a vector of nodes,
- each 1 in the parity check matrix is replaced by a rotation matrix with random offset.
Vectorized (parallel) operations are used: $4 \times$ int32_t and $4 \times$ float32_t on 128 bit registers (SSE, SSE2 extension) for arithmetic and shift operations.
Bit operations are bit-sliced using 64 bit all-purpose registers.


## 4 FAST APPROXIMATIONS FOR $\log _{2}$ AND $2^{x}$

- Fast $y^{\prime} \approx y=\exp _{2}(x)=2^{x}$ operation:

Input: 32 bit fixed point number $x$ (stored in int32_t).
Output: 32 bit IEEE 754 floating point number $y^{\prime} \approx 2^{x}$.
Algorithm (based on [2]):

- shift $x$ to the left by 7 bit: $x \ll 7$
- add an offset of 127 to the exponent: $\mathrm{x}+=0 \times 3 f 800000$;
- interpret the result as float (using a union) $y^{\prime}$

The last step is no actual operation, as it is just interpreting the memory content as float.


 s e e e e e e e e mmmmmmmm...mmmmmmmmm $y^{\prime}$ s e' $e^{\prime} e^{\prime} e^{\prime} e^{\prime} e^{\prime} e^{\prime} e^{\prime} m m m m m m m m \ldots m m m m m m m$


The exact result would be $y=2^{x}$ (black curve).
Above algorithm calculates (if $x>0) y^{\prime}=2^{[x\rfloor} \times(1+\operatorname{fract}(x))$ (red curve).

- Fast $x^{\prime} \approx x=\log _{2}(y)$ operation:

Input: float $y$, operations performed in opposite order.
Output: 32 bit fixed point number $x$.

## REFERENCES

[1] R G Gallager, Low-density parity-check codes, IEEE Transactions on Information Theory 8, 21-28 (1962).
[2] P Mineiro, fastapprox,
http://code.google.com/p/fastapprox/.

## W|W|T|F

VIENNA SCIENCE AND TECHNOLOGY FUND

