High-Performance Sum-Product Decoding of Quasi-Cyclic LDPC Codes

Christoph Pacher’, Bernhard Omer
TChristoph.Pacher@AIT.ac.at

Safety & Security Department, AIT Austrian Institute of Technology GmbH, 1220 Vienna, Austria

AI I AUSTRIAN INSTITUTE
OF TECHNOLOGY

SUMMARY

We present a highly optimized modification of the Sum-Product Algorithm for LDPC decoding for CPUs which achieves the same decoding properties as the original
algorithm but offers a throughput on a CPU that is comparable to GPU implementations using hundreds of GPU cores. To achieve this improvement we make use of i)
qguasi-cyclic LDPC codes and vectorized SSE commands, ii) interleaved variable/check node processing, and iii) concurrent use of Log-Likelihood Ratio and Log-Likelihood
Difference representations and fast conversion between them. For typical parameters we can achieve a throughput of approx. 40 Mbit/s on a quad-core CPU.

1 SUM-PRODUCT DECODING OF LDPC CODES

» A Low-Density Parity-Check (LDPC) code [1] can be defined by its sparse
parity-check matrix H: The null-space of the parity-check matrix defines the
set of all codewords: C = {x € {0,1}": xH' = 0}.

» The iterative sum-product algorithm (SPA) efficiently solves the NP-hard
maximume-likelihood decoding problem of finding the codeword with the
minimum Hamming distance to a received word in good approximation.

Variable Nodes Check Nodes

(LLR) (LLD)
1\ 1
vsum(v) v veed) csum
_

\120(2)

lterative algorithm - Update Rules

LLRygg(V.) = LLRA(vV) + > LLRggg(v,c).
c'eC,\{c}

LLDggg(v.c)= |] sienllDggg(v,c) > |LLDggg(V',0)]
v'eV\{v} v'eV\{v}
C, = set of check-nodes adjacent to v,
V. = set of variable-nodes adjacent to c.

2 OPTIMIZING CHECK NODE & VARIABLE NODE UPDATES

Algorithm 1: Interleaved Sum-Product Algorithm
initialize B@M() /* check — variable x/
initialize_vsum();
for iter = 1 to max_iter do
for checknode = 1 to number of checknodes do
csum=0;
for edge = 1 to degree(checknode) do
variablenode = adjancency_list(checknode, edge);
vsum(variablenode)-= GENICHECKROEENEE0E)
v2c(edge)=LLR2LLD(vsum(variablenode));
csum += V26(edge);
for edge = 1 to degree(checknode) do
variablenode = adjancency_list(checknode, edge);

BRVISHECKROUSNSH0E) - | D2\ | R (csum-V26(edge));
vsum(variablenode)+= CENICHECKABOENEENE) « restore vsum */

if converged() then
return jter;

return ERROR;

We use Quasi-Cyclic codes:
» each variable and check node is replaced by a vector of nodes,

» each 1 in the parity check matrix is replaced by a rotation matrix with random
offset.

Vectorized (parallel) operations are used: 4 x int32_t and 4 x float32_t on 128 bit
registers (SSE, SSE2 extension) for arithmetic and shift operations.
Bit operations are bit-sliced using 64 bit all-purpose registers.

3 TRANSFORMING BETWEEN LLR AND LLD

Two domains for probabilities/likelihoods are used:

» Log-Likelihood Ratio: LLR(p) = log, (1%’3)

» Signed Log-Likelihood Difference: LLD(p) = sign(2p — 1) log, [2p — 1].
» Transformation between LLR(p) and LLD(p)

ILLR(p)| = ~(ILLD(p)]),
ILLD(p)| = ~(ILLR(p)|).
sign(LLR(p)) = sign(LLD(p))

» [ransform

v(x) = —log,(tanhy(x/2)) = log, <§it 1) =log, |1+ <2X1 _ 1) ~1

2

Note, that ~y is an involution, i.e. v 1(x) = v(x) = ~v(v(x)) = 1.
We use the fast approximations (see box 4) for log, and 2* (red curve).

Jjoexs
]Joexo

uonewixoidde
uonewixoidde

gammaz2 (x), gammaz2 (gammaz2 (x))
gammaz2 (x), gammaz2 (gammaz2 (Xx))

i ~—

Figure: Approximated (red) and exact (black) ~v(x). v(v(x)) is shown (green) to demonstrate that
the approximated ~(x) is very close to an involution for relevant inputs.

4 FAST APPROXIMATIONS FOR log, AND 2%

» Fast y' ~ y = exp,(x) = 2% operation:
Input: 32 bit fixed point number x (stored in int32_t).

Output: 32 bit IEEE 754 floating point number y’ ~ 2*.
Algorithm (based on [2]):

» shift x to the left by 7 bit: x «= 7;

» add an offset of 127 to the exponent: x += 0x3f800000;

» interpret the result as float (using a union) y’

The last step is no actual operation, as it is just interpreting the memory
content as float.

00123456789 abcde f 0...7 89 abc/def
b G 1< 1 v T e D O S AR A A A
s ittt ittt] fo.f] f 0000000
sleeleeeleeemmMmmMmMmMmmmm..mmmmmmmmm
yiseleeeeeeemmmmmmmm..mmmmmmmmm

The exact result would be y = 2* (black curve).
Above algorithm calculates (if x > 0) y' = 2] x (1 + fract(x)) (red curve).

» Fast x’ = x = log,(y) operation:
Input: float y, operations performed in opposite order.
Output: 32 bit fixed point number x.

5 SIMULATION RESULTS

» Despite the approximations made

= for v(-), the error correction
o = performance matches that of the
- ' classical Sum-Product Algorithm.
® » The throughput is approximately
S 2 100 MBit/s per decoder iteration

on a single CPU core (2.5 GHz)!

» For iter = 10 on a quad-core cpu,
bit error rate we achieve 40 Mbit/s throughput.

- []
.....

REFERENCES ACKNOWLEDGEMENTS

[1] R G Gallager, Low-density parity-check codes,
IEEE Transactions on Information Theory 8, 21-28
(1962).

2] P Mineiro, fastapprox,
http://code.google.com/p/fastapprox/.

VIENNA SCIENCE
AND TECHNOLOGY FUND

