Quantum Bit Error Estimation Based on the Syndrome of a Linear Code
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SUMMARY

We derive and analyze a Maximum Likelihood (ML) estimator for the quantum bit error rate (QBER). The estimator is based on Low-Density Parity-Check (LDPC) codes. Bob
takes as input only his raw key and the syndrome he has received from Alice. We focus our analysis [1] on check-regular LDPC codes where every row of the parity-check
matrix has constant weight but briefly address the check-irregular case with non-constant weights as well. We obtain a quite accurate estimator that can be used for two tasks
iIn QKD: as an improvement over the sampling estimator (which compares sets of individual bits), and to improve the efficiency in interactive reconciliation protocols.

1 RECONCILIATION WITH LOW-DENSITY PARITY-CHECK (LDPC) CODES

» One way to define a binary linear error correcting code is by means of its
parity-check matrix H: The null-space of the parity-check matrix defines the
set of all codewords: C = {x € {0,1}": xH" =0}.

» If H is sparse the code is called Low-Density Parity-Check (LDPC) code [2].

» Codes with constant weight d (called check degree) in each row are
check-regular.

» An important application is reconciliation of data in quantum crypto: Assume
Alice and Bob have obtained correlated vectors, x4 and xg = x4 & e, resp.,
where e is the errorword (of low weight).

Then Alice calculates the syndrome S, := x4H ' of her vector x4 and an
LDPC code with parity-check matrix H and sends S, on an error-free channel
to Bob. If the quantum bit error rate has not been too large, Bob can
reconstruct x, from xg and S,.

» But, can we reuse the syndrome for further purposes?

2 ERROR ESTIMATION WITH LDPC CODES

Yes, Bob can :) estimate the quantum bit error rate prior to decoding!
We model the errors from the quantum channel, i.e. the individual bits of e as iid:
Pr{e; =1} = p, where p denotes the quantum bit error rate (QBER).

» Bob performs the calculation
S:=eH = (XA D XB) H' = S, XBHT.

The individual bits of the syndrome S can be well approximated to also be i.i.d. The
approximation consists in neglecting the (weak) correlation between syndrome bits
that sum over a common data bit, x;.

» With this approximation the probability g that a syndrome bit is one is [2]
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3 DERIVATION OF THE MAXIMUM LIKELIHOOD ESTIMATOR FOR THE QBER

Let m denote the length of S, and W = wt{S} denote the Hamming weight of S.
The syndrome weight W is a binomially distributed random variable, i.e.,

PriW = w} = fhinom(w; m, q) := (m) qg’(1—q)" ", (2)

w
and the maximum likelihood (ML) estimate for p given a syndrome weight w is

p(w) = arg mp@lx {fbinom(W; m, fd(ﬂl)) % (3)
which can be solved analytically. Equivalently, one can take the ML estimator for g
n w
= — 4
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and use it with (1) to obtain the estimate p. Both approaches give the same result:
» The final estimator in closed form is
1—(1—2%)d
p(w) = 1(2m) m=1/2 (5)
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This approach can be generalized to check-irregular LDPC codes with different
check degrees by replacing the binomial distribution in (2) with a multinomial dis-
tribution.

4 PROPERTIES OF THE MAXIMUM LIKELIHOOD ESTIMATOR

» Mean
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» Bias
B(d, p, m) = p(d, p, m) — p. (7)
» Mean squared error (MSE)
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» Cramér-Rao Lower Bound
The mean squared error of any biased estimator is lower bounded by
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where Z(p) is the Fisher information that the syndrome S carries about p:
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5 NORMALIZED MEAN AND STANDARD DEVIATION

A [ T » The analytical mean (6) of the estimator is
13| close to the true parameter p.
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» The simulated normalised standard

i ) deviation (shown as error bars) is (slightly)
larger than the analytical result due to the
violation of the independence assumption of
the syndrome bits.
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6 MEAN SQUARED ERROR COMPARED TO CRAMER-RAO LOWER BOUND AS
FUNCTIONS OF ERROR RATE AND CHECK DEGREE
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» Due to the relatively small number

of check nodes there is a relatively
large gap between the MSE (8) of
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7 MEAN SQUARED ERROR AS FUNCTION OF NUMBER OF CHECK NODES
AND CHECK DEGREE
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» For small check node degrees d
already a relatively small number of
check nodes m leads to a small
MSE.

» For a large number of check nodes,

the curves approach the inverse of
the Fisher information.
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= 00y the estimator and the Cramér-Rao
0.015F bound (9).
0.01 » A higher check node degree leads
0.0051 to a significant increase of the MSE.
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