

QCRYPT 2013

August 04,2013 IQC, University of Waterloo Canada

Saturation Attack on Continuous-Variable Quantum Key Distribution System

Hao Qin*, Rupesh Kumar, and Romain Alléaume Quantum Information Team @ TELECOM ParisTech, Institut MINES-TELECOM, LTCI UMR 5141,CNRS

*Contact:hao.qin@telecom-paristech.fr

Practical security of Quantum Key Distribution

- Security of practical QKD depends on physical implementations
- Side channel attacks in DV QKD
- Single photon detector is often a target

Full-field implementation of a perfect eavesdropper on a quantum cryptography system

QCrypt 2013

V. Makarov *et al.* , Nature Comm.2, 349 (2011)

Continuous-Variable Quantum Key Distribution

- Gaussian modulation coherent state (GMCS) protocol (F. Grosshans et al., Nature, 421:238–241, 2003)
- Quantum channel is totally characterized by T and ξ
- Side channel in CV QKD? Practical security?

Parameter Estimations in CV QKD

Gaussian linear model y = tx + z ($\sigma_z^2 = N_0 + \eta T\xi + v_{ele}$)

Gaussian random variable: x: Alice, y: Bob, z: Noise, t: $\sqrt{\eta T}$

Secret key rate based on collective attack

$$\Delta I = \beta I_{AB} - \chi_{BE}$$

Side channel attack in practical CV QKD system Manipulation of Local oscillator Equal-amplitude attack

• H.Häseler et al. Phys. Rev. A 77, 032303 (2008)

Calibration attack and preventing

- A. Ferenczi et al. CLEOE-IQEC, Vol. 13 (2007)
- P. Jouguet *et al.* Phys. Rev. A 87, 062313 (2013)
 Influence on shot noise calibration.

QCrypt 2013

LO fluctuation opens a loophole

X-C. Ma et al. arXiv:1303.6043 (2013)
 Inaccurate LO monitoring could lead to attack.

Counter measure : Monitor LO Intensity & Real time shot noise calibration

Institut Mines-Télécom

Side channel attack in practical CV QKD system

Wavelength attack

- X-C. Ma et al. Phys. Rev. A 87, 052309 (2013)
- J-Z. Huang et al. Phys. Rev. A 87, 062329 (2013)
- Wavelength dependent beam splitter
- Attack is possible even if LO is monitored.

Counter measure :

- Wavelength filter
- Wavelength independent beam splitter

Combined with intercept resend attack

- ✓ Entanglement breaking: R. Namiki et al. Phys. Rev. A 72, 024301 (2005)
- Experimental demonstration of intercept resend attack on CV QKD:
 J. Lodewyck, et al. Phys. Rev. Lett, 98, 030503 (2007)

Experimental observation : Saturation of homodyne detection (Shot noise calibration)

ECOM

Saturation model

$$y_{sat} = \begin{cases} \alpha & y \ge \alpha \\ tx + z + \Delta & -\alpha < y < \alpha \\ -\alpha & y \le -\alpha \end{cases}$$

Detection range can not be infinity

- \blacksquare α is a **characteristic** of the detector
- A can be manipulated by Eve
- When α is large and Δ is small, saturation model returns to Gaussian linear model

y = tx + z

Homodyne detector's Data acquisition card

What happens when there is saturation ?

Saturation case:
$$y_{sat} = \begin{cases} \alpha & y \ge \alpha \\ tx + z + \Delta & -\alpha < y < \alpha \\ -\alpha & y \le -\alpha \end{cases}$$

Analysis in the low saturation region $(\alpha^2 \gg V_B, \alpha^2 \gg N_0)$: $< x^2 > = V_A$ unchanged

$$< xy_{sat} > = \sqrt{\eta T_{sat}} V_A \quad T_{sat} < T$$

$$= < xy_{sat} > \approx \frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{\alpha - \Delta}{\sqrt{2\sigma_Z^2 + 2t^2 \sigma_X^2}} \right) \right] < xy >$$

$$= V_{B,sat} = \eta T' V_A + N_0 + \eta T' \xi' + v_{ele} \quad \forall B,sat < V_B$$

Shot noise calibration: $\langle y_0^2 \rangle = \langle z^2 \rangle \approx N_0 + v_{ele}$ unchanged Excess noise in SNU will be changed and could be smaller $\xi'_{SNU} = \frac{\xi'}{N_0} = \frac{V_{B,sat}}{\eta T_{sat}} - \frac{V_A}{N_0} - \frac{1}{\eta T_{sat}} - \frac{v_{ele}}{\eta T_{sat}N_0}$

Saturation attack strategy

Full Intercept-resend attack+ Saturation of homodyne detection

 $V_A \in \{1, 100\}, \eta = 60\%, v_{ele} = 0.01, \xi_{sys} = 0.01, \xi_{Eve} = 2, \beta = 95\%, a = 0.21 dB/km$

Excess noise can be reduced to an arbitrarily small value by changing Δ

Add noise if excess noise<0

Secret key rate estimated by Alice and Bob based on a Saturation model+ Full IR Attack

- ✓ Alice and Bob believe they still have some positive "secret key rate". → Effective attack, however T is reduced
- □ Attack only possible above a distance which depends on ∆

- No Saturation if $(\alpha \Delta)^2 > \sigma_B^2$
- Quantitatively, if [TEST(k)]
- X_B passes χ₂ test with high confidence
- $\checkmark < y > + k\sigma_B < \alpha$ for large enough k

Then

- **Pr**(detector saturated) < $\varepsilon(k)$
- Proposed Counter-Measure
 Post-process on [TEST(k)]

> Alice and Bob should add a test on the first moment (mean value) of X_B

Conclusions

- We have experimentally observed the saturation of homodyne detection
- Propose saturation attack which fully compromises the practical security of CV QKD system implemented GMCS protocol
- Saturation attack is achievable with current technology
- Assumptions in security proofs < Agree?! > Practical setup
- Propose suitable counter measures against saturation based attack

THANK YOU!

QUESTIONS?

QCrypt 2013

Institut Mines-Télécom

Looking for zero-error attack: Improved strategy

Eve amplifies the states that she sends to Bob

Eve has chance to control both T and ξ

T & Excess noise estimations under improved strategy

 $V_A \in \{1, 100\}, \eta_{Bob}=60\%, v_{ele}=0.01, \xi_{Sys}=0.01, \xi_{Eve}=2, \beta=95\%, a=0.21dB/km$

Quantum channel transmission is improved!

Secret key rate estimated by Alice and Bob under improved strategy

Parameter setup $V_A \in \{1, 100\}$ $\eta=60\%$ $V_{ele}=0.01$ $\xi_{sys}=0.01$ $\xi_{Eve}=2$ $\beta=95\%$ a=0.21 dB/km Collective attack $\Delta I = \beta I_{AB} - \chi_{BE}$

- Eve has achieved a "zero error" attack: T and ξ unchanged; Eve knows everything which Alice sends to Bob
- Key rate increases
- Attack distance from 24 km

Parameters taken for the simulations

- VA, chosen according to Figure on the right (optimal choice of ECC, imposing a fixed SNR => VA (vs Distance)).
- Efficiency of Bob : η=60%,
- Excess noise of electronics: vele=0.01
- Excess noise of system: ξsys =0.01
- Reconciliation efficiency: β=95%
- Attenuation coefficient: a=0.21dB/km

FIG. 2. (Color online) Optimal modulation variance with respect to the distance: $\eta = 0.6$, $V_{\text{elec}} = 0.01$, $\xi = 0.01$, $\alpha = 0.2$ dB/km, and $\beta = 95\%$,90% from top to bottom.

Long-distance continuous-variable quantum key distribution with a Gaussian modulation **PRA 84, 062317, 2011**

Experimental demonstration of long-distance continuous-variable quantum key distribution Nature Photonics, 10, 1038, 2013

