An Accurate Analysis of the BINARY Information Reconciliation Protocol by Generating Functions

SEAN SEET (NUS HIGH SCHOOL OF MATHEMATICS)

RUTH II-YUNG NG (UNIVERSITY OF CHICAGO)

KHOONGMING KHOO (DSO NATIONAL
LABORATORIES)

Information Reconciliation (IR)

- Errors in raw key shared by Alice and Bob in quantum key exchange because of:
- Eve's eavesdropping
- Quantum channel noise
- Need information reconciliation to correct shared key by public exchange of parity bits.
- Want to:
- Minimize leakage of parity bits
- Maximize Decoding Success Probability (probability of having no errors left after decoding)

BINARY and CASCADE IR Protocol

- BINARY IR Protocol:

At pass i, divide shared secret into blocks of length k_{i}
Binary search error correction performed on each odd-parity block. Correct one error by exchanging $\log _{2}\left(\mathrm{k}_{\mathrm{i}}\right)$ parity bits.
Not all errors corrected, so partially corrected secret is permuted and chopped up into blocks of size $\mathrm{k}_{\mathrm{i}+1}=2 \mathrm{k}_{\mathrm{i}}$.
Repeat steps 2 to 3 for a number of passes, e.g. four or five passes.

- CASCADE IR Protocol:

In step 2, when an error bit is identified in a current pass, backtrack to correct more error bits which are paired with this bit in previous passes.

Objective

- To find the exact error probability distribution for the BINARY IR protocol at each pass.
- This will help us determine:
- Leakage of parity bits
- Decoding Success Probability for the BINARY protocol.
- Will help us in analysis of CASCADE, one of the popular IR protocol in use today.

Notations

Symbol Meaning

n Length of secret

$\mathrm{k}_{\mathrm{i}} \quad$ Size of blocks at pass I
$\mathrm{p} \quad$ Bit error rate (BER)
$\Delta_{\mathrm{i}}(\mathrm{j}-\mathrm{y} \mid \mathrm{j}) \quad$ Probability that at $\mathrm{i}^{\text {th }}$ pass, j -y errors are corrected conditioned on there being j errors
$P_{i}(y) \quad$ Probability that there are y errors at the $i^{\text {th }}$ pass

Probability Distribution of BINARY

- Theorem 1: Let the initial probability distribution before BINARY IR is given by:

$$
P_{0}(y)=\binom{n}{y} p^{y}(1-p)^{n-y}
$$

The probability that there are y errors left in the raw key after pass i of the BINARY IR protocol is:

$$
P_{i}(y)=\sum_{j=y}^{y+n / k_{i}} P_{i-1}(y) \Delta_{i}(j-y \mid y)
$$

Proof Idea: Supposed there are jerrors before executing pass i, we need to correct j - y errors to be left with y errors after pass i. Then we sum over all possible number of errors j before pass i.

Probability Distribution of BINARY

- Theorem 2: The quantity $\Delta_{\mathrm{i}}(\mathrm{j}-\mathrm{y} \mid \mathrm{j})$ needed in Theorem 1 is computed by: $\left(n / k_{i}\right)$

$$
\frac{(j-y)}{\binom{n}{j}} \times C_{i, j, y}
$$

where $\mathrm{C}_{\mathrm{i}, \mathrm{j}, \mathrm{y}}$ is the coefficient of x^{j} in:

$$
\left(\frac{(1+\mathrm{x})^{k_{i}}-(1-x)^{k_{i}}}{2}\right)^{j-y}\left(\frac{(1+\mathrm{x})^{\mathrm{k}_{\mathrm{i}}}+(1-x)^{k_{i}}}{2}\right)^{n-(j-y)}
$$

Proof Idea: To correct j-y out of j errors, we need to distribute j error bits among $\mathrm{n} / \mathrm{k}_{\mathrm{i}}$ blocks such that j -y of them has odd parity.

Example

An example computation of Theorem 1 and comparison

 with simulation for $\mathrm{n}=2048$-bit, $\mathrm{BER}=3 \%$.| | Pass $i=1$ | Pass $i=2$ | Pass $i=3$ | Pass $i=4$ |
| :---: | :---: | :---: | :---: | :---: |
| $P_{i}(0)$ | 0.00002 | 0.08808 | 0.63320 | 0.92559 |
| $P_{i}(2)$ | 0.00020 | 0.17874 | 0.23883 | 0.06221 |
| $P_{i}(4)$ | 0.00114 | 0.21261 | 0.08548 | 0.00974 |
| $P_{i}(6)$ | 0.00421 | 0.19004 | 0.02891 | 0.00192 |
| $P_{i}(8)$ | 0.01166 | 0.14029 | 0.00937 | 0.00042 |
| $P_{i}(0)$ | 0.00000 | 0.08700 | 0.63740 | 0.92750 |
| $P_{i}(2)$ | 0.00010 | 0.17690 | 0.23460 | 0.05950 |
| $P_{i}(4)$ | 0.00110 | 0.21610 | 0.08540 | 0.01030 |
| $P_{i}(6)$ | 0.00360 | 0.19370 | 0.02840 | 0.00230 |
| $P_{i}(8)$ | 0.01070 | 0.13500 | 0.01020 | 0.00020 |

TABLE II
BINARY Simulation (top) and Calculation (bottom): $k_{1}=16$, $n=2048, p=0.03$

Brassard-Savail's Bound

- Brassard and Savail derived a bound to track the number of errors remaining in (an initial) block after pass i.
- They use $\delta_{i}(\mathrm{j})$ to denote the probability that there are 2 j error bits remaining after pass i.
- They proved that $\delta_{i}(\mathrm{j}) \leq \delta_{\mathrm{i}-1}(\mathrm{j}) / 2$ under suitable conditions. From this, we get lower bound for decoding success probability:

$$
\mathrm{P}_{\mathrm{i}}(\mathrm{o}) \geq\left(1-\sum_{\mathrm{i} \neq 0} \delta_{1}(\mathrm{j}) / 2^{\mathrm{i}-1}\right)^{\mathrm{n} / \mathrm{k} 1}
$$

Comparison with Brassard-Savail's Bound

- Here we compare decoding success probability using our formula for BINARY and Brassard's lower bound for CASACADE:

Value	Our Calculation for BINARY	Brassard's Lower Bound for CASCADE
$P_{1}(0)$	0.00002	0.00002
$P_{2}(0)$	0.08808	0.00476
$P_{3}(0)$	0.63320	0.07106
$P_{4}(0)$	0.92559	0.26839
$P_{5}(0)$	0.98420	0.51894
$P_{6}(0)$	0.99492	0.72068
$P_{7}(0)$	0.99722	0.84902

TABLE VI
COMPARISON, $k_{1}=16, n=2048, p=0.03$

Comparison with Brassard-Savail's Bound

- CASCADE has better error correction performance than BINARY because of the backtracking step.
- So decoding success probability for CASCADE should be higher than BINARY.
- From the comparison table in previous slide, we see that the lower bound of decoding success from Brassard-Savail's formula may not be tight enough.

Conclusion

- Brassard-Savail's formula
- Focuses on bound for error probability distribution within a block for CASCADE IR.
- Is very easy to compute.
- But when extrapolated to deduce behavior of error distribution across the whole string, it may not be tight enough.
- Our formula
- Calculates exact probability for BINARY IR. Hope to extend this formulation to compute probability for CASCADE.
- Can be complex to compute for large n. Hope to find an efficient way to comupte the generating functions coefficients $\mathrm{C}_{\mathrm{i}, \mathrm{j}, \mathrm{y}}$

