

Centre for Quantum Technologies

One-Sided Device Independence of BB84 Via Monogamy-of-Entanglement Game

<u>Marco Tomamichel¹</u>, Serge Fehr², Jędrzej Kaniewski¹, Stephanie Wehner¹

¹Centre for Quantum Technologies, National University of Singapore, Singapore

²Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands

Waterloo, August 7, 2013

Goal: Security from basic physical principles!

Goal: Security from basic physical principles!

1. State Assumptions

(have they already been successfully attacked, e.g. fair sampling?)

2. Formalize Security √

(there is almost universal agreement on how to do this for QKD)

3. Prove security using the laws of quantum mechanics applied to the formalized protocol/assumptions (\checkmark) (many techniques are known, we add one more in this talk)

4. Is the protocol feasible?

(using current technology, does the protocol ever output something non-trivial?)

Goal: Security from basic physical principles!

1. State Assumptions

(have they already been successfully attacked, e.g. fair sampling?)

2. Formalize Security √

(there is almost universal agreement on how to do this for QKD)

3. Prove security using the laws of quantum mechanics applied to the formalized protocol/assumptions (\checkmark) (many techniques are known, we add one more in this talk)

4. Is the protocol feasible?

(using current technology, does the protocol ever output something non-trivial?)

There does not currently exist a protocol/proof for which both 1. and 4. have a satisfactory answer.

Example: Errors vs. Fair Sampling

How do we deal with lost signals?

Example: Errors vs. Fair Sampling

How do we deal with lost signals?

Often, this issue is completely ignored — theorists presume the existence of a measurement result / experimentalists presume that the security proof survives if one just applies it to the measured signals.

Example: Errors vs. Fair Sampling

How do we deal with lost signals?

Often, this issue is completely ignored — theorists presume the existence of a measurement result / experimentalists presume that the security proof survives if one just applies it to the measured signals.

Solution	Assumption	Feasibility
Ignore them!	fair sampling	key is produced
Randomize!	none	too many errors

Reichhardt et al., Vazirani/Vidick: Security without assumptions on devices is shown.

Reichhardt et al., Vazirani/Vidick: Security without assumptions on devices is shown.

However, low key rate and error tolerance! Losses not considered \Rightarrow not feasible.

Reichhardt et al., Vazirani/Vidick: Security without assumptions on devices is shown.

However, low key rate and error tolerance! Losses not considered \Rightarrow not feasible.

Interesting approaches:

- •Restrict adversary, e.g. no long-term memory (Pironio et al.)
- •Allow some device assumptions: measurement device independent QKD (Lo/Curty/Qi, Braunstein/Pirandola), **one-sided device independent QKD**

Reichhardt et al., Vazirani/Vidick: Security without assumptions on devices is shown.

However, low key rate and error tolerance! Losses not considered \Rightarrow not feasible.

Interesting approaches:

- •Restrict adversary, e.g. no long-term memory (Pironio et al.)
- •Allow some device assumptions: measurement device independent QKD (Lo/Curty/Qi, Braunstein/Pirandola), **one-sided device independent QKD**

We show that BB84 is one-sided device independent

Heisenberg

It is **impossible** that **both** the position x and the momentum p are fully determined.

Heisenberg

It is **impossible** that **both** the position x and the momentum p are fully determined.

X

р

Heisenberg

It is **impossible** that **both** the position x and the momentum p are fully determined.

X

Many different formalizations of this statement have been proposed.

р

Example: Polarization in X and Z direction

Example: Polarization in X and Z direction

It is **impossible to predict**, with high probability, the outcomes of polarization measurements in **both** directions.

Example: Polarization in X and Z direction

It is **impossible to predict**, with high probability, the outcomes of polarization measurements in **both** directions.

More formally:
$$p_{\text{guess}}(X) + p_{\text{guess}}(Z) \le 1 + \frac{1}{\sqrt{2}}$$

Find the more A is entangled with B, the less it can be with C. And vice versa.

- Find the more A is entangled with B, the less it can be with C . And vice versa.
- As given above: is a qualitative statement.
- Exist different quantitative statements.
- Part of our contribution:
 - new way to get a quantitative statement
 - with applications to quantum crypto

A Monogamy (of Entanglement) Game

A Monogamy (of Entanglement) Game

ALICE (Game Master)

A Monogamy (of Entanglement) Game

A

Set up:

- $A = A_1...A_n$: n qubits
- B & C : arbitrary many qubits
- joint state of ABC : arbitrary

ALICE

(Game Master)

- Chooses random $q = (q_1, \ldots, q_n) \in \{+, \times\}^n$,
- $\$ measures $A_1...A_n$ in respective bases $q_1,...,q_n$ -> $x \in \{0,1\}^n$,
- sends q to BOB and CHARLIE

- Chooses random $q = (q_1, \ldots, q_n) \in \{+, \times\}^n$,
- $\$ measures $A_1...A_n$ in respective bases $q_1,...,q_n$ -> $x \in \{0,1\}^n$,
- sends q to BOB and CHARLIE

- Chooses random $q = (q_1, \ldots, q_n) \in \{+, \times\}^n$,
- $^{\textcircled{a}}$ measures $A_1...A_n$ in respective bases $q_1,...,q_n$ -> $x \in \{0,1\}^n$,
- sends q to BOB and CHARLIE

- Chooses random $q = (q_1, \ldots, q_n) \in \{+, \times\}^n$,
- measures $A_1...A_n$ in respective bases $q_1,...,q_n \rightarrow x \in \{0,1\}^n$,
- sends q to BOB and CHARLIE

- Chooses random $q = (q_1, \ldots, q_n) \in \{+, \times\}^n$,
- measures $A_1...A_n$ in respective bases $q_1,...,q_n \rightarrow x \in \{0,1\}^n$,
- sends q to BOB and CHARLIE

- Chooses random $q = (q_1, \ldots, q_n) \in \{+, \times\}^n$,
- measures $A_1...A_n$ in respective bases $q_1,...,q_n \rightarrow x \in \{0,1\}^n$,
- sends q to BOB and CHARLIE

- Due to uncertainty principle:
 - fresh randomness in x

- Due to uncertainty principle:
 - fresh randomness in x
 - If A & B are fully entangled:
 - can achieve $\mathbf{x'} = \mathbf{x}$

- Due to uncertainty principle:
 - fresh randomness in x
 - If A & B are fully entangled:
 - can achieve $\mathbf{x'} = \mathbf{x}$
 - By monogamy:
 - A & C are not entangled
 - CHARLIE has a hard time

- Due to uncertainty principle:
 - fresh randomness in x
 - If A & B are fully entangled:
 - can achieve $\mathbf{X}' = \mathbf{X}$
 - By monogamy:
 - A & C are not entangled
 - CHARLIE has a hard time

Thus, we expect:

 $p_{\rm win}(n) := \max P[X' = X \land X'' = X] \approx 0$

initial states measurements

Formally:
$$p_{\min}(n) := \max_{\{P_x^{\theta}\}, \{Q_x^{\theta}\}} \frac{1}{2^n} \left\| \sum_{\theta, x} H^{\theta} |x\rangle \langle x| H^{\theta} \otimes P_x^{\theta} \otimes Q_x^{\theta} \right\|$$

Formally:
$$p_{\min}(n) := \max_{\{P_x^\theta\}, \{Q_x^\theta\}} \frac{1}{2^n} \left\| \sum_{\theta, x} H^{\theta} |x\rangle \langle x| H^{\theta} \otimes P_x^{\theta} \otimes Q_x^{\theta} \right\|$$

Theorem:

$$p_{\min}(n) \le \left(\frac{1}{2} + \frac{1}{2\sqrt{2}}\right)^n \approx 0.85^n$$

Remarks:

- Bound is tight (i.e., $p_{win}(n) = ...$)
- Strong parallel repetition: $p_{win}(n) = p_{win}(1)^n$
- Is attained without any entanglement
 - => monogamy completely kills power of entanglement

Formally:
$$p_{\min}(n) := \max_{\{P_x^{\theta}\}, \{Q_x^{\theta}\}} \frac{1}{2^n} \left\| \sum_{\theta, x} H^{\theta} |x\rangle \langle x| H^{\theta} \otimes P_x^{\theta} \otimes Q_x^{\theta} \right\|$$

Formally:
$$p_{\min}(n) := \max_{\{P_x^{\theta}\}, \{Q_x^{\theta}\}} \frac{1}{2^n} \left\| \sum_{\theta, x} H^{\theta} |x\rangle \langle x| H^{\theta} \otimes P_x^{\theta} \otimes Q_x^{\theta} \right\|$$

Theorem:

$$p_{\min}(n) \le \left(\frac{1}{2} + \frac{1}{2\sqrt{2}}\right)^n \approx 0.85^n$$

Proof:

very simple

• New operator-norm inequality: bounds $||\sum_i O_i||$ for positive operators $O_1,...,O_n$ in terms of $||\sqrt{O_i}\sqrt{O_j}||$.

Generalizations

Arbitrary (and arbitrary many) measurements for Alice

Generalizations

- Arbitrary (and arbitrary many) measurements for Alice
- Relaxed winning condition for Bob and/or Charlie, i.e., x'≈ x and x"≈ x, or x'≈ x and x"= x.

Main Application Result

Theorem (informal): Standard BB84 QKD remains secure even if Bob's measurement device is malicious. Theorem (informal): Standard BB84 QKD remains secure even if Bob's measurement device is malicious.

Remarks:

Referred to as: one-sided device-independent security

Was claimed before, but no correct proof was given

Theorem (informal): Standard BB84 QKD remains secure even if Bob's measurement device is malicious.

Remarks:

- Referred to as: one-sided device-independent security
- Was claimed before, but no correct proof was given

In the proof:

- We analyze EPR-pair bases version of BB84
- Well known to imply security for standard BB84 QKD

CHARLIE

EVE

EPR-Pair Based BB84 QKD q ALICE X C q BOB EVE E B

X

ALICE

x′

К

BOB

- comparing X & X' on random subset
- error correction
- privacy amplification

EVE

F

For sake of argument: say that Eve measures E

For sake of argument: say that Eve measures E

- For sake of argument: say that Eve measures E
- Solution Monogamy game $\Rightarrow P[X' \approx X \land X'' = X] \leq e^n$

For sake of argument: say that Eve measures E
 Monogamy game ⇒ P[X' ≈ X ∧ X'' = X] ≤ eⁿ
 ⇒ P[X' ≈ X] ≤ e^{n/2} (and thus P[abort] ≈ 1)

For sake of argument: say that Eve measures E
 Monogamy game ⇒ P[X' ≈ X ∧ X'' = X] ≤ eⁿ
 ⇒ P[X' ≈ X] ≤ e^{n/2} (and thus P[abort] ≈ 1) √

For sake of argument: say that Eve measures E
 Monogamy game ⇒ P[X' ≈ X ∧ X'' = X] ≤ eⁿ
 ⇒ P[X' ≈ X] ≤ e^{n/2} (and thus P[abort] ≈ 1) √
 or P[X'' = X | X' ≈ X] ≤ e^{n/2} ∀ measurement of E

For sake of argument: say that Eve measures E
 Monogamy game ⇒ P[X' ≈ X ∧ X'' = X] ≤ eⁿ
 ⇒ P[X' ≈ X] ≤ e^{n/2} (and thus P[abort] ≈ 1) √
 or P[X'' = X | X' ≈ X] ≤ e^{n/2} ∀ measurement of E
 ⇒ H_∞(X | QE,X' ≈ X) ≥ n/2 ⋅ log(1/e)

For sake of argument: say that Eve measures E
 Monogamy game ⇒ P[X' ≈ X ∧ X'' = X] ≤ eⁿ
 ⇒ P[X' ≈ X] ≤ e^{n/2} (and thus P[abort] ≈ 1) √
 or P[X'' = X | X' ≈ X] ≤ e^{n/2} ∀ measurement of E
 ⇒ H_∞(X | QE, X['] ≈ X) ≥ n/2 · log(1/e) √

Comparison with other protocols

	Reichhardt et al. (E91)	Vazirani/ Viddick (E91)	this work (BB84/BBM92)
device assumptions	none	none	trusted Alice (source)
noise tolerance	0%	1.2%	1.5% (11%)
key rate	0%	2.5%	22.8% (100%)
finite key analysis	×	×	\checkmark

Summary

Capture "monogamy of entanglement" by a game

- Analyze this monogamy game, and show:
 - winning probability is exponentially small
 - strong parallel repetition in some cases

Summary

Capture "monogamy of entanglement" by a game

- Analyze this monogamy game, and show:
 - winning probability is exponentially small
 - strong parallel repetition in some cases
- Application I: to BB84 QKD
 allow a malicious measurement device for Bob
 extremely simple proof

Summary

Capture "monogamy of entanglement" by a game

- Analyze this monogamy game, and show:
 - winning probability is exponentially small
 - strong parallel repetition in some cases
- Application I: to BB84 QKD
 allow a malicious measurement device for Bob
 extremely simple proof
- Application II: to position-based quantum crypto
 first 1-round position-verification scheme

- Post-Doc and PhD positions are available at CQT in Singapore: <u>http://www.quantumlah.org/openings/</u>
- Our group homepage: <u>http://quantuminfo.quantumlah.org/contact.html</u>

- Post-Doc and PhD positions are available at CQT in Singapore: <u>http://www.quantumlah.org/openings/</u>
- Our group homepage:
 <u>http://quantuminfo.quantumlah.org/contact.html</u>

THANK YOU