Loopholes in Bell experiments

Nicolas Brunner

QCRYPT 2014, Paris

- 1. Warm-up: CHSH game
- 2. Bell locality
- 3. Quantum nonlocality, Bell's theorem
- 4. Experiments
- 5. Loopholes
- 6. Relevance for device-independent protocols

CORRELATIONS

ALICE (Geneva)

BOB (Bristol)

CORRELATIONS

ALICE (Geneva)

CORRELATED BEHAVIOUR

CORRELATIONS

ALICE (Geneva)

BOB (Bristol)

CORRELATED BEHAVIOUR

HOW DOES IT WORK?

ALICE (Geneva)

BOB (Bristol)

ALICE (Geneva)

BOB (Bristol)

ALICE (Geneva)

BOB (Bristol)

DEVICES HAVE A COMMON STRATEGY

PRE-ESTABLISHED CORRELATIONS

ALICE (Geneva)

BOB (Bristol)

DEVICES HAVE A COMMON STRATEGY

PRE-ESTABLISHED CORRELATIONS

CAN THIS BE TESTED?

2 questions: X_0 or X_1 (Alice) Y_0 or Y_1 (Bob) 2 answers: +1 or -1

2 questions: $X_0 \text{ or } X_1$ (Alice) $Y_0 \text{ or } Y_1$ (Bob) 2 answers: +1 or -1

2 questions: X_0 or X_1 (Alice) Y_0 or Y_1 (Bob) 2 answers: +1 or -1

2 questions: X_0 or X_1 (Alice) Y_0 or Y_1 (Bob) 2 answers: +1 or -1

2 questions: X_0 or X_1 (Alice) Y_0 or Y_1 (Bob) 2 answers: +1 or -1

2 questions: X_0 or X_1 (Alice) Y_0 or Y_1 (Bob) 2 answers: +1 or -1

2 questions: X_0 or X_1 (Alice) Y_0 or Y_1 (Bob) 2 answers: +1 or -1

2 questions: X_0 or X_1 (Alice) Y_0 or Y_1 (Bob) 2 answers: +1 or -1

Score $\leq \frac{3}{4}$ for ANY classical strategy

CHSH BELL INEQUALITY

Correlation function: $E(X_0, Y_1) = p(X_0 = Y_1) - p(X_0 \neq Y_1)$

Clauser-Horne-Shimony-Holt 69

CHSH BELL INEQUALITY

Correlation function: $E(X_0, Y_1) = p(X_0 = Y_1) - p(X_0 \neq Y_1)$

 $\mathsf{CHSH} = \mathsf{E}(\mathsf{X}_{0},\mathsf{Y}_{0}) + \mathsf{E}(\mathsf{X}_{0},\mathsf{Y}_{1}) + \mathsf{E}(\mathsf{X}_{1},\mathsf{Y}_{0}) - \mathsf{E}(\mathsf{X}_{1},\mathsf{Y}_{1}) \leq 2$

Clauser-Horne-Shimony-Holt 69

Data: joint prob distribution p(a,b|x,y)

Data: joint prob distribution p(a,b|x,y)

Can this data be explained by a local model?

Data: joint prob distribution p(a,b|x,y)

Can this data be explained by a local model?

Bell locality: $p(a,b|x,y) = \int d\lambda p(\lambda) p(a,b|x,y,\lambda)$

= $\int d\lambda p(\lambda) p(a|x,\lambda) p(b|y,\lambda)$

Bell locality : $p(a,b|x,y) = \int d\lambda \ p(a|x,\lambda) \ p(b|y,\lambda)$

Bell locality : $p(a,b|x,y) = \int d\lambda \ p(a|x,\lambda) \ p(b|y,\lambda)$

Local correlations satisfy ALL Bell inequalities

Bell locality : $p(a,b|x,y) = \int d\lambda \ p(a|x,\lambda) \ p(b|y,\lambda)$

Local correlations satisfy ALL Bell inequalities

Violation of a Bell inequality implies **NONLOCALITY**

Quantum strategy

Quantum strategy

1. Entangled state $|\Psi\rangle = |0,1\rangle - |1,0\rangle$

2. Local meas
$$X_0 = \vec{z} X_1 = \vec{x}$$
 and $Y_0 = -\vec{x} \cdot \vec{z} Y_1 = \vec{x} \cdot \vec{z}$

Quantum strategy

1. Entangled state $|\Psi\rangle = |0,1\rangle - |1,0\rangle$

2. Local meas
$$X_0 = \vec{z} \quad X_1 = \vec{x} \text{ and } Y_0 = -\vec{x} \cdot \vec{z} \quad Y_1 = \vec{x} \cdot \vec{z}$$

 $\vec{E}(\vec{a},\vec{b}) = \langle \Psi | \vec{a} \quad \vec{b} | \Psi \rangle = -\vec{a} \quad \vec{b}$

Υ₁

Quantum strategy

1. Entangled state $|\Psi\rangle = |0,1\rangle - |1,0\rangle$

2. Local meas
$$X_0 = \vec{z} \quad X_1 = \vec{x} \text{ and } Y_0 = -\vec{x} \cdot \vec{z} \quad Y_1 = \vec{x} \cdot \vec{z}$$

 $\vec{E(a,b)} = \langle \Psi | \vec{a} \quad \vec{b} \mid \Psi \rangle = -\vec{a} \quad \vec{b}$
 $\vec{CHSH} = \vec{E(X_0,Y_0)} + \vec{E(X_0,Y_1)} + \vec{E(X_1,Y_0)} - \vec{E(X_1,Y_1)}$

Quantum strategy

1. Entangled state $|\Psi\rangle = |0,1\rangle - |1,0\rangle$

2. Local meas
$$X_0 = \vec{z} X_1 = \vec{x}$$
 and $Y_0 = -\vec{x} \cdot \vec{z} Y_1 = \vec{x} \cdot \vec{z}$
 X_0

$$\vec{E(a,b)} = \langle \Psi | \vec{a} \vec{b} | \Psi \rangle = - \vec{a} \vec{b}$$

CHSH = $E(X_0, Y_0) + E(X_0, Y_1) + E(X_1, Y_0) - E(X_1, Y_1)$ = $1/\sqrt{2}$

 X_1

Quantum strategy

1. Entangled state $|\Psi\rangle = |0,1\rangle - |1,0\rangle$

2. Local meas
$$X_0 = \vec{z} X_1 = \vec{x}$$
 and $Y_0 = -\vec{x} \cdot \vec{z} Y_1 = \vec{x} \cdot \vec{z}$
 X_0

$$\vec{E(a,b)} = \langle \Psi | \vec{a} \vec{b} | \Psi \rangle = -\vec{a} \vec{b}$$

CHSH = $E(X_0, Y_0) + E(X_0, Y_1) + E(X_1, Y_0) - E(X_1, Y_1)$

 X_1

0

= 1/√2

Quantum strategy

1. Entangled state $|\Psi> = |0,1> - |1,0>$

= 1/√2

Quantum strategy

1. Entangled state $|\Psi\rangle = |0,1\rangle - |1,0\rangle$

2. Local meas
$$X_0 = \vec{z} X_1 = \vec{x} \text{ and } Y_0 = -\vec{x} \cdot \vec{z} Y_1 = \vec{x} \cdot \vec{z}$$

 $\vec{E}(\vec{a},\vec{b}) = \langle \Psi | \vec{a} \vec{b} | \Psi \rangle = -\vec{a} \vec{b}$

CHSH = $E(X_0, Y_0) + E(X_0, Y_1) + E(X_1, Y_0) - E(X_1, Y_1)$

= -1/\[]2

Quantum strategy

1. Entangled state $|\Psi\rangle = |0,1\rangle - |1,0\rangle$

Quantum strategy

1. Entangled state $|\Psi\rangle = |0,1\rangle - |1,0\rangle$

2. Local meas
$$X_0 = \vec{z} X_1 = \vec{x}$$
 and $Y_0 = -\vec{x} \cdot \vec{z} Y_1 = \vec{x} \cdot \vec{z}$

$$\vec{E(a,b)} = \langle \Psi | \vec{a} \vec{b} | \Psi \rangle = -\vec{a} \vec{b}$$

CHSH = $E(X_0, Y_0) + E(X_0, Y_1) + E(X_1, Y_0) - E(X_1, Y_1) = 2\sqrt{2} > 2$

QUANTUM NONLOCALITY

 X_0

 X_1

Quantum correlations are NONLOCAL

Stronger than **ANY** local correlations

Quantum correlations are NONLOCAL

Stronger than **ANY** local correlations

Bell's Theorem: Predictions of QM are incompatible with ANY theory satisfying Bell locality

BEST QUANTUM STRATEGY

CHSH ≤ 2 + || 2 $[X_0, X_1] [Y_0, Y_1] ||^{1/2} ≤ 2√2$ Tsirelson's bound

BEST QUANTUM STRATEGY

CHSH $\leq 2 + || 2 [X_0, X_1] [Y_0, Y_1] ||^{1/2} \leq 2\sqrt{2}$

Tsirelson's bound

Best possible score?

Best possible score?

CHSH = E(X=Y=0) + E(X=0,Y=1) + E(X=1,Y=0) - E(X=Y=1) = 4

Can this be reached?

- Non-signaling
- Maximally nonlocal CHSH = 4

Popescu-Rohrlich 1994, Review: Popescu 2014

- Non-signaling
- Maximally nonlocal CHSH = 4

WHY DOES THE PR BOX NOT EXIST IN NATURE ?

Popescu-Rohrlich 1994, Review: Popescu 2014

EXPERIMENTS

EXPERIMENTS / LOOPHOLES

Technical imperfections open loopholes

EXPERIMENTS / LOOPHOLES

Technical imperfections open loopholes

1. LOCALITY LOOPHOLE

 \rightarrow Space-like separation

EXPERIMENTS / LOOPHOLES

Technical imperfections open loopholes

1. LOCALITY LOOPHOLE

 \rightarrow Space-like separation

2. DETECTION LOOPHOLE

 \rightarrow High detection efficiency

No communication between Alice and Bob

 $p(a|x,y,b,\lambda) = p(a|x,\lambda)$ & $p(b|x,y,a,\lambda) = p(b|y,\lambda)$

No communication between Alice and Bob

 $p(a|x,y,b,\lambda) = p(a|x,\lambda)$ & $p(b|x,y,a,\lambda) = p(b|y,\lambda)$

Space-like separation must be enforced

Random (or free) choice of settings x,y

 $p(\lambda|x,y) = p(\lambda)$

Random (or free) choice of settings x,y

 $p(\lambda|x,y) = p(\lambda)$

RNGs space-like separated from source

Photonic experiments / locality loophole

1972 Freedman & Clauser

Closing locality loophole

- 1982 Aspect, Dalibard, Roger
- 1998 Tittel et al. 10km Weihs et al. Einstein locality
- 2010 Scheidl et al. PNAS 'Freedom of choice' loophole

SPOOKY ACTION AT A DISTANCE ?

Salart et al. Nature 2008

Detection loophole

Idea: if the (observed) detection efficiency is too low, a local model can lead to Bell inequality violation Pearle PRD 1970

Detection loophole

Idea: if the (observed) detection efficiency is too low, a local model can lead to Bell inequality violation Pearle PRD 1970

Treshold efficiency is typically high (75%)

Strategy exploiting the possibility of not (always) answering

Strategy exploiting the possibility of not (always) answering

Alice's detector clicks with prob $\frac{1}{2}$

Alice's detector clicks with prob $\frac{1}{2}$

Post-selected statistics gives CHSH = 4

Local model (exploiting detection loophole) reproducing PR box

Minimal efficiency required?

Minimal efficiency required?

Full statistics violates CHSH $\eta^2 2 \sqrt{2} + (1 - \eta)^2 2 > 2.$ \checkmark \checkmark \checkmark \checkmark Clicks A & BNo click A & B

Minimal efficiency required?

Minimal efficiency using two-qubit singlet

 $|\Psi(\theta)\rangle = \cos\theta |0,0\rangle + \sin\theta |1,1\rangle$

 $|\Psi(\theta)\rangle = \cos\theta |0,0\rangle + \sin\theta |1,1\rangle$

$$\theta = \pi/4 \quad \Rightarrow \quad \eta = 82.8\%$$

$$\theta \Rightarrow 0 \quad \Rightarrow \quad \eta \Rightarrow 66.7\%$$

More nonlocality with less entanglement

Eberhard PRA 1993

- **Parameters:** $|\Psi>$ of dimension d x d
 - M measurement settings
 - K outcomes

- **Parameters:** $|\Psi>$ of dimension d x d
 - M measurement settings
 - K outcomes

Massar 2005 $\eta \rightarrow 0$ for d $\rightarrow \infty$

Vertesi, Pironio, NB 2010 1. η_A =1/M , η_B =1 with d=M, K=2 2. $\eta_{A} = \eta_{B} = 0.61$ with d=M=4, K=2

Experiments / detection loophole

Atoms

Unit efficiency

No detection loophole

- 2001 NIST, Rowe et al. Nature
- 2013 Hoffman et al. Science Separation of **20m**

Experiments / detection loophole

Atoms

Unit efficiency

No detection loophole

- 2001 NIST, Rowe et al. Nature
- 2013 Hoffman et al. Science Separation of **20m**

Superconducting qubits

2009 Ansmann et al. Nature

Experiments / detection loophole

Atoms

Unit efficiency

No detection loophole

- 2001 NIST, Rowe et al. Nature
- 2013 Hoffman et al. Science Separation of **20m**

2009 Ansmann et al. Nature

Photons

2013 Illinois: Christensen et al. PRL (efficiency 75%) Vienna: Giustina et al. Nature

ALL EXPERIMENTS SO FAR CONFIRMED Q NONLOCALITY

BUT...

NO EXPERIMENT COULD CLOSE BOTH LOOPHOLES SIMULTANEOUSLY

Loophole-free EPR steering

Total efficiency A ~ 38% Steering ineq violated by > 20 σ

Wittmann et al. NJP 2012

Towards a loophole-free Bell test

Photons: Illinois experiment

Closes detection loophole TES (superconducting) detectors: efficiency ~ 75%

Christensen et al. PRL 2013

Atom-photon entanglement

'Event ready' atom-atom entanglement

Simon & Irvine PRL 2003

Atomic Bell test

Bell violation with 2 atoms separated by 20 meters Munich: Hofmann et al. Science 2012

Atomic Bell test

Bell violation with 2 atoms separated by 20 meters Munich: Hofmann et al. Science 2012

Continuous variables

Interest: homodyne measurements have high efficiency

Proposed in 1988 by Grangier et al.

Homodyne measurements Garcia-Patron et al. PRL06, Nha & Carmichael PRL07

Fatal Post-selection Babichev et al. PRL04

Homodyne & photodetection (particle and wave) Cavalcanti et al. PRA11

Continuous variables

Interest: homodyne measurements have high efficiency

Proposed in 1988 by Grangier et al.

Homodyne measurements Garcia-Patron et al. PRL06, Nha & Carmichael PRL07

Fatal Post-selection Babichev et al. PRL04

Homodyne & photodetection (particle and wave) Cavalcanti et al. PRA11

Progress, but still challenging

Spin-photon interactions

Heralded mapping of photonic entanglement to spins Relevant for atoms, NV centres, Q dots

> Sangouard et al. NJP 2013 Brunner et al. NJP 2013

Loopholes in device-independent protocols

Device-independent protocols

GOAL: Achieve information-theoretic task without placing assumptions on the detailed functioning of the devices used in the protocol

Device-independent protocols

GOAL: Achieve information-theoretic task without placing assumptions on the detailed functioning of the devices used in the protocol

Device-independent protocols

1. Locality loophole Not so crucial...

Alice and Bob must shield their labs anyway

2. Detection loophole Important !

Fake Bell violation reported experimentally Gerhardt et al. PRL 2011, Pomarico et al. NJP 2011

Implementations

DI randomness certification

Proof-of-principle experiments

- Atoms: 42 bits in month Pironio et al. Nature 2010
- Photons: Christensen et al. PRL 2013

DI QKD

Still challenging

END

References

Brunner, Cavalcanti, Pironio, Scarani, Wehner, RMP 2014

Larsson J Phys A to appear

Nonlocality

Entanglement

Incompatible measurements

Q1 Do all entangled states violate a Bell inequality?

- **Q1** Do all entangled states violate a Bell inequality?
- Q2 Do all incompatible measurements violate a Bell inequality?

All pure entangled states violate a Bell inequality

Gisin 91, Popescu-Rohrlich 92

... complicated!

Scenario 1: Non-sequential measurements

Scenario 1: Non-sequential measurements

Werner 89, Barrett 2002

Scenario 2: Sequential measurements → Hidden nonlocality

Popescu 95, Hirsch et al. 2013

Scenario 3: Many copies, joint measurements → Activation of nonlocality

Palazuelos 2012

Scenario 4: Many copies, LOCC before Bell test

Scenario 4: Many copies, LOCC before Bell test

Peres 96, 99

What about bound entanglement?

Peres conjecture (1999):

Bound entanglement cannot lead to Bell inequality violation

Intuition:

weakest form of entanglement cannot lead to strongest correlations

Peres 1999

Bell Nonlocality

Entanglement Distillability

Negative Partial Transpose

Peres conjecture (1999)...

Bell Nonlocality

Entanglement Distillability

Negative Partial Transpose

... is false

Bell Nonlocality

Entanglement Distillability

Negative Partial Transpose

NPT bound entanglement?

State: 3 x 3 (Moroder et al 2014)

$$\begin{split} \varrho &= \sum_{i=1}^{4} \lambda_{i} |\psi_{i}\rangle \langle \psi_{i}|. & |\psi_{1}\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle\right) \\ \lambda &= \left(\frac{3257}{6884}, \frac{450}{1721}, \frac{450}{1721}, \frac{27}{6884}\right) & |\psi_{2}\rangle = \frac{a}{12} \left(|01\rangle + |10\rangle\right) + \frac{1}{60} |02\rangle - \frac{3}{10} |21\rangle \\ \mu_{3}\rangle &= \frac{a}{12} \left(|00\rangle - |11\rangle\right) + \frac{1}{60} |12\rangle + \frac{3}{10} |20\rangle \\ |\psi_{4}\rangle &= \frac{1}{\sqrt{3}} \left(-|01\rangle + |10\rangle + |22\rangle\right), \end{split}$$

State: 3 x 3 (Moroder et al 2014)

$$\begin{split} \varrho &= \sum_{i=1}^{4} \lambda_{i} |\psi_{i}\rangle \langle \psi_{i}|. & |\psi_{1}\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle\right) \\ \lambda &= \left(\frac{3257}{6884}, \frac{450}{1721}, \frac{450}{1721}, \frac{27}{6884}\right) & |\psi_{2}\rangle = \frac{a}{12} \left(|01\rangle + |10\rangle\right) + \frac{1}{60} |02\rangle - \frac{3}{10} |21\rangle \\ \lambda &= \left(\frac{1}{2} \sqrt{\frac{131}{2}}\right) & |\psi_{3}\rangle = \frac{a}{12} \left(|00\rangle - |11\rangle\right) + \frac{1}{60} |12\rangle + \frac{3}{10} |20\rangle \\ |\psi_{4}\rangle &= \frac{1}{\sqrt{3}} \left(-|01\rangle + |10\rangle + |22\rangle\right), \end{split}$$

$$\mathrm{PT}(\varrho) = (\mathbb{1} \otimes T_B)(\varrho) = \varrho$$

 $\longrightarrow Q$ is PPT \longrightarrow undistillable

Bell inequality (Pironio 2014):

Alice: 3 binary meas Bob: 1 ternary meas, 1 binary meas $I = -p_A(0|2) - 2p_B(0|1) - p(01|00) - p(00|10) + p(00|20) + p(01|20) + p(00|01) + p(00|11) + p(00|21) \le 0,$

Bell inequality (Pironio 2014):

Alice: 3 binary meas Bob: 1 ternary meas, 1 binary meas $I = -p_A(0|2) - 2p_B(0|1) - p(01|00) - p(00|10) + p(00|20) + p(01|20) + p(00|01) + p(00|11) + p(00|21) \le 0,$

SDP methods

SDP technique to find Bell inequality violation with PPT state

$$I_{PPT} = 2.6526 \times 10^{-4}$$

Upper bound (Moroder et al. 2013)

$$I_{PPT}^{max} < 4.8012 \times 10^{-4}$$

Applications

1. Device-independent randomness certification (Pironio et al. Nature 2010, Colbeck PhD thesis 2007)

Quantum nonlocality \rightarrow genuine quantum randomness

Bell violation I_{PPT}	$H_{min} (y=0)$
2.6314×10^{-4}	4.2320×10^{-4}

2. Communication complexity (Zukowski et al. 2004, Buhrman et al. 2010)

Open questions

1. Do all BE states violate a Bell inequality?

- 2. Large (unbounded) Bell violations with BE state?
- 3. Device-independent QKD with BE state?

END

References

Brunner, Cavalcanti, Pironio, Scarani, Wehner, RMP 2014

Larsson J Phys A to appear