Routes towards quantum information processing with superconducting circuits

Quantum Mechanics: resources for information processing

1930s: quantum weirdness

1960s: Bell inequalities 1980s: quantum violation demonstrated **A. Aspect et al.**

entangled states | *left+, right -* \rangle + | *left-, right +* \rangle

breakthrough: a resource for computing

A second quantum revolution ?

Richard Jozsa

David Deutsch

Blueprint of a quantum processor based on quantum gates

single qubit Gate

Electrical implementations ?

Can (macroscopic) electrical circuits be quantum (usually not!)

Jack S. Kilby handling the first integrated circuit

electrical variables usually not quantum

ALL OF THEM ?

oxyde

ext circuit

AI/AIOx/AI junction

A quantum electrical component : the Josephson junction

the single Cooper pair box

(Quantronics 1996, NEC 1999)

Superconducting Josephson quantum circuits

- 1. Quantum behavior demonstrated in 1980s
- 2. Since 1999 qubits with increasingly long coherence times.
- 3. Potentially scalable

Other electrical implementations : quantum dots in 2DEGs

The Cooper Pair Box: from charge to phase

first electrical qubit : Cooper pair box Nakamura, Pashkin &Tsai (NEC, 1999)

First operational qubit : quantronium, single-shot readout, protected against dephasing

Vion et al., (Quantronics, 2002)

Circuit QED: Cooper pair box in a microwave cavity (2D, 3D)

The transmon Cooper pair box: circuit QED (inspired from cavity QED)

Cooper pair box in the phase regime

a non linear resonator at the **single** photon level Circuit QED: dispersive regime

Status of SC quantum processors

Schoelkopf Lab, Yale University DiCarlo et.al., Nature 2009 Two-Oubit Grover Search

No individual readout: not operational

Martinis Lab, UC Santa Barbara

Yamamoto et.al. , PRB **82** 2010 , Nat Phys 2012 *Two-Qubit Deutsch-Josza Algorithm Factorization of 15*

individual destructive readout

Quantronics, CEA

Dewes et. al., PRL & PRB 2012 Grover Search Algorithm on 4 items

Individual non-destructive readout

Quantum speedup demonstrated on elementary cases

Why slow progress ?

Difficult

scalability issues

Quantum coherence in complex architecture Hifi readout of qubit register Quantum error Correction

An operational two-qubit (4 states) processor

Dewes et al., Phys. Rev. Lett. 108, 057002 (2012)

Transmon readout with a non-linear resonator

Switchable SWAP interaction

A quantum algorithm for the search problem

Classical "Guess and check strategy" success probability : 1/4 Quantum Grover search quantum algorithm finds in 1 call !

> For searching 1 object out of N: sqrt(N) steps sqrt(N) gain/ classical search algorithm

The Grover search algorithm

Single run success rate > 1/4 demonstrates Quantum Speedup

The readout scalability issue in circuit QED

Linear dispersive readout

A N+1 architecture based on multiplexed JBA-readout

Demonstrating multiplexed JBA-readout

readout XY pulses drives

Flux tunable

junction

V. Schmitt et al., 2014; CMD25 poster, submitted

Individual qubit readout

multiplexed qubit readout

Note: lack of local flux tuning lines prevents getting best readout performance simultaneously.

Scalability issues: quantum error correction QC: > 100s of robust logical qubits needed

(1) Quantum error correction codes:

Measure syndroms for assigning errors without qubit projection demanding threshold for gate errors $< 10^{-4}$ huge resource overhead x50 ?

Di Carlo, TUD parity measurements for bit-flip detection + FPGA feedback

bit-flip correction of a single qubit within reach

(2) Surface codes: less demanding threshold for gate errors $< 10^{-2}$ extreme resource overhead x 10^3 x 10^4

(3) Other paradigms:

spins, Schrödinger cat states in high Q resonators, Adiabatic Quantum Computing

(2) The surface code

Kitaev, 2002, Preskill 2003, Gottesman stabilizers

Readable ref: Fowler et al., PRA 86, 032324 2012)

- 2D array of qubits (measure (x and Y types), data) with CNOT gates , Z measurements.
- nearest-neighbor coupling
- Forgiving threshold (~0.99)
- Error detection is enough, correction handled by classical postprocessing
- Extreme resource overhead (*irrealistic*?)

○ Data ● measurement

Preliminary 9 qubit test circuit

J. Martinis team UCSB- Google

(3) Engineered dissipation for robust logical qubits with simple errors that can be detected and corrected

Dynamically protected cat-qubits: a new paradigm for universal quantum computation Mirrahimi, Leghtas, Albert, Touzard, Schoelkopf, Liang ,Devoret NEW JOURNAL OF PHYSICS 16 045014 (2014) arXiv:1312.201

See:

Pumping + non-linear element yield 2photon dissipation for memory

Cat states built with coherent states are robust Parity measurements detect errors. Gates based on Zeno effect

Superconducting qubits

See:

Kubo et al., PRL 107, 220501, 2011 Grèzes et al., PRX 2, 021049, 2014 Julsgaard et al., PRL 110, 250503 2012

The Dwave strategy & machine (10 M\$)

Ehe New Hork Eimes March 22 2013

A Strange Computer Promises Great Speed

Kim Stallknecht for The New York Time

512 qubits

??

Adiabatic Quantum computing (?)

An annealing machine assisted by quantum effects ??

QC with gates versus Adiabatic Quantum Computation

The QC way:

unitary evolution of a qubit register (according to algorithm) & readouts

Difficulties:

unitary evolution quantum error correction readout scalability

overcoming standard computers:

N=50-100 robust qubits (i.e. corrected from errors)

State of the art:

N=2-4 , errors, no QEC N=10 in view, without QEC

Proof of principle for quantum speedup on elementary problem

(3) The AQC way:

finding the ground state of a Ising spin Hamiltonian H^z(t) (that encodes the problem) starting from a trivial one following an adiabatic evolution

$$H(t) = B(t)H^{z}(t) - A(t)\sum \sigma_{i}^{x}$$

Evolution is simple

Problem encoding not easy, good for optimization role of decoherence and temperature not understood

overcoming standard computers: N=4000-8000 qubits

State of the art (Dwave machine): N=500, operational , not perfect, N=2000 in view

Ising spin-glass problem solved on 100 spins but quantum speedup not demonstrated Ronnow ,..., Troyer Science 334, 420 (2014)

QUANT UM ELEC RONICS GROUP

QIP :

œ

SPEC

V. Schmitt, C. Grezes, K. Juliusson, Y Kubo, M. Stern, X Zhou, P. Bertet, D. Vion, and D. Esteve and before : A. Dewes, A. Palacios, F. Nguyen, F. Mallet, F. Ong, S. Bernon.

Collaborations: A. Auffèves, I. Diniz (I. Néel); K. Moelmer, B. Julsgaard (Aarhus University) V. Jacques, J-F Roch, A. Dréau LPQM, ENS Cachan; J. Isoya Tsukuba University