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Quantum Key Distribution (QKD)
Using quantum communication to generate a secret key between two 
remote parties Alice and Bob not known by any third party Eve. 
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Important: Practical Security Analysis! 



Implementations of QKD
Discrete Variable Protocols: Observables with a finite number of 
outcomes
 Example: BB84 with polarization degree of photon
 Based on single photon source and detectors 

Continuous Variable (CV) Protocols: Observables with a continuous 
spectrum 
 Encoding by amplitude and phase modulations of the EM-field
 Continuous Gaussian Modulation
 Measurement: Homodyne detection 
 Source: Gaussian states 
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Pros and Cons of CV Protocols 
+ State generation (Gaussian states) and measurement (homodyne 

detection) are robust and have high efficiency (compared to single 
photon detectors) 

+ Based on standard telecommunication technology (simple integration 
into current networks)

– Error correction for Gaussian distributed variables more difficult
–Security proofs more involved

– Infinite-dimensional system and continuous measurement range
– state estimation and finite-statistics are difficult 
– important tools developed for discrete protocols do not apply (e.g. 

exponential de Finetti theorems, postselection technique) 
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Long distance CV QKD (Gaussian modulation)
Limited distance due to losses 

Long distances requires a reverse reconciliation protocol (Grosshans et al., 

Nature, 421, 2003): 

 Classical post-processing: Bob sends information to Alice in the reconciliation 
protocol
 Measurement of Bob introduces randomness that cannot be controlled by 

Eve (shot noise)
 Reverse reconciliation allows (theoretically) to tolerate arbitrary amount of 

losses (arbitrary distances)
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Security usually as strong as the assumptions: 

Se\

Security proofs for CV QKD:
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Security usually as strong as the assumptions: 

1) Assumption on Attacks: 

Se\

Security proofs for CV QKD:
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Each QM signal is 
attacked independently 
and identically

Implementation Information Theoretical  

Eve can attack 
arbitrarily: no 
restriction! 



Security proofs for CV QKD:
2) Asymptotic Limit (infinite number of quantum communication)
 simplifies Security Analysis extremely (Gaussian modulation) 
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Coherent attacks = collective attacks
Optimality of Gaussian attacks
No finite statistics required 
Mutual Information

Security analysis based on 
mutual information can be 
restricted to Gaussian 
collective attacks (e.g Nature, 
421,2003; PRL 93,170504, 2004)



Security proofs for CV QKD:
2) Asymptotic Limit (infinite number of quantum communication)
 simplifies Security Analysis extremely (Gaussian modulation) 

not practical: finite-size effects appear in real-life implementations 
composable security: Eve’s knowledge estimated by one shot entropy 
(e.g., smooth min-entropy) 
Against Gaussian Collective: Leverrier et  al., PRA 81, 062343 (2010), Jouget et al, 
Nature Phot, 7, 2012FinitSe

FABIAN FURRER, REVERSE RECONCILIATION CV QKD BASED ON THE 
UNCERTAINTY PRINCIPLE 12

Coherent attacks = collective attacks
Optimality of Gaussian attacks
No finite statistics required 
Mutual Information

Security analysis based on 
mutual information can be 
restricted to Gaussian 
collective attacks (e.g Nature, 
421,2003; PRL 93,170504, 2004)



Next 
Talk! 

Security proofs for CV QKD:
2) Asymptotic Limit (infinite number of quantum communication)
 simplifies Security Analysis extremely (Gaussian modulation) 

not practical: finite-size effects appear in real-life implementations 
composable security: Eve’s knowledge estimated by one shot entropy 
(e.g., smooth min-entropy) 
Against Gaussian Collective: Leverrier et  al., PRA 81, 062343 (2010), Jouget et al, 
Nature Phot, 7, 2012

Against General Collective Attacks: Leverrier arXiv:1408.5689
FinitSe
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Security Proofs against Coherent Attacks 
Only few finite-size security proofs against general (coherent) attacks:
1. Based on symmetrization and the postselection technique Leverrier et 

al, PRL 110, 030502, 2013 
 allows to lift collective to coherent attacks (similar to discrete variable) 
 currently only feasible for direct reconciliation protocols (symmetrization)
 Doesn’t scale well in number of rounds 

2. Based on the entropic uncertainty principle with quantum memory
(FF et al, PRL 109, 2012)
 entanglement based squeezed state protocols 
 complete experimental demonstration  Gering et al, arXiv:1406.6174

 so far only for direct reconciliation protocols (short distances)

Contribution here: 
Extending 2. to reverse reconciliation → improved distance! 
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The Protocol: Quantum Phase 

Similar to FF et al, PRL 109, 2012

1) Alice prepares and distributes a two mode squeezed state (EPR state). 

2) Both apply randomly either amplitude or phase measurements 

3) Bob applies a threshold test before his measurement and aborts the 
protocol if the test fails. 

5)  They repeat the procedure N times 
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Threshold Test 
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Goal: Control probability for large measurement outcomes  (>M)          

→ cut-off for unbounded measurement range 

1) Incoming signal is mixed with vacuum by a beam splitter (BS) with almost perfect 
transmittance T ≈ 0.99 
2) Heterodyne detection of the reflected beam 
3) Test passed if outcomes of the heterodyne detection are smaller than a value α. 

BS
T

BS
1/2

𝑠𝑠𝐵𝐵 𝑠𝑠𝐵𝐵′

𝑡𝑡1

𝑡𝑡2

Q

P

𝑎𝑎

𝑏𝑏
𝑎𝑎𝑎

Threshold Test

|Q|<α

|P|<α



The Protocol: Classical Phase
1) Alice and Bob publicly announce measurement choices 

2) Discretization of Measurement Outcomes: 
 threshold parameter M (smaller than detector range)
 constant binning δ (compatible with the detector resolution)

3) Parameter Estimation with phase measurements: 
 Average distance 𝑑𝑑𝑃𝑃𝑃𝑃 = 1

𝑁𝑁𝑃𝑃
∑𝑖𝑖=1
𝑁𝑁𝑃𝑃 |𝑋𝑋𝐴𝐴𝑖𝑖 − 𝑋𝑋𝐵𝐵𝑖𝑖 |

 Variance of d and variance of all individual measurements

4) Key generation from amplitude measurements 𝑋𝑋𝐴𝐴 ,𝑋𝑋𝐵𝐵: 
 reverse reconciliation protocol 
 applying two-universal hash functions
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Finite-Key Length 
Main Result: secure key length against coherent attacks

𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙
1

𝑐𝑐 𝛿𝛿
− 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑃𝑃𝑃𝑃 + 𝜇𝜇 − ℓ𝑃𝑃𝐸𝐸 − 𝒪𝒪(𝑙𝑙𝑙𝑙𝑙𝑙

1
𝜖𝜖

)
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Finite-Key Length 
Main Result: secure key length against coherent attacks

𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙
1

𝑐𝑐 𝛿𝛿
− 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑃𝑃𝑃𝑃 + 𝜇𝜇 − ℓ𝑃𝑃𝐸𝐸 − 𝒪𝒪(𝑙𝑙𝑙𝑙𝑙𝑙

1
𝜖𝜖

)

Assumptions: 
Bob’s discretized measurements: ideal phase and amplitude 
measurements with phase difference 𝜋𝜋/2 → 𝑐𝑐(𝛿𝛿).
 sequential measurements are independent
 the local oscillator has to be trusted (or monitored) 
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Key rate against Distance

FABIAN FURRER, REVERSE RECONCILIATION CV QKD BASED ON THE 
UNCERTAINTY PRINCIPLE 21

 Key rate = key length per communicated quantum signal 𝑁𝑁 = 109

 Source: squeezing/antisqueezing of 11/16dB (Eberle et al, PRA 83, 052329, 2011)
 Reconciliation efficiency 𝜷𝜷*:  ℓ𝑃𝑃𝐸𝐸 = 𝐻𝐻 𝑋𝑋𝐵𝐵 − 𝛽𝛽 𝐼𝐼(𝑋𝑋𝐴𝐴:𝑋𝑋𝐵𝐵)
 Energy test: transmittance T=0.99 and threshold α=28 (ℏ = 2) (robust!)
 Discretization: 𝛿𝛿 ≈ 0.1 ,𝑀𝑀 ≈ 1000 (14 bits → can be reduced for post-

processing)

Loss= 0.2dB/km + 
coupling losses

𝛽𝛽 = 0.95
𝛽𝛽 = 0.9

𝛽𝛽 = 0.85
𝑁𝑁 = 109
𝜖𝜖𝑠𝑠 = 10−9

* Gehring et al, arxiv1406.6174, Jouguet et al, arXiv:1406.1050



Security Proof: Part 1
Main Ingredient: Uncertainty principle with quantum side information 
(similar as in FF et al, PRL 109, 2013 ) 
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𝐻𝐻min𝜖𝜖 𝑄𝑄 𝐸𝐸 + 𝐻𝐻m𝑎𝑎𝑎𝑎𝜖𝜖 𝑃𝑃 𝐴𝐴 ≥ − log 𝑐𝑐 𝛿𝛿

right entropy measure for QKD Berta et al, arXiv:1308.4527
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A
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B

Q

P

“Uncertainty of Q  given E” + “Uncertainty of P given B” ≥ “Overlap of P and Q”

𝐻𝐻min𝜖𝜖 𝑄𝑄 𝐸𝐸 + 𝐻𝐻m𝑎𝑎𝑎𝑎𝜖𝜖 𝑃𝑃 𝐴𝐴 ≥ − log 𝑐𝑐 𝛿𝛿

Important: Measurement Q and P have to go over the entire range (real line)!
→ threshold test to reduce to bounded range! 

right entropy measure for QKD Berta et al, arXiv:1308.4527



Security Proof: Part 2 
Statistical Estimation: 

Problem with CV systems: 
 Unbounded measurement range 
 Usual statistical bounds like, e.g., Hoeffding or Bernstein’s bound on 

the sum of random variables require finite range
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P PQ PQ P PQQ

P P P P

Random Sample: 𝑑𝑑𝑃𝑃𝑃𝑃 = 1
𝑁𝑁𝑃𝑃
∑𝑖𝑖=1
𝑁𝑁𝑃𝑃 |𝑄𝑄𝐴𝐴𝑖𝑖 − 𝑄𝑄𝐵𝐵𝑖𝑖 |

Estimation of 𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘 = 1
𝑁𝑁𝑄𝑄
∑𝑖𝑖=1
𝑁𝑁𝑄𝑄 |𝑄𝑄𝐴𝐴𝑖𝑖 − 𝑄𝑄𝐵𝐵𝑖𝑖 | (w. h. p.) 



Security Proof: Part 2 
1) Threshold Test:

Theorem:
Probability that the probability to measure a phase/amplitude larger 
than  M conditioned on test pass for α decays exponentially: 

Pr 𝑞𝑞𝑠𝑠 > 𝑀𝑀 𝑎𝑎𝑛𝑛𝑑𝑑 𝑞𝑞𝑡𝑡1 ≤ 𝛼𝛼 ≤ 𝐶𝐶 exp −
1 − 𝑇𝑇
2𝑇𝑇

𝑀𝑀 − 𝛼𝛼

2

 Independent on input state 

Idea of  proof (phase space picture):
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Security Proof: Part 2 
2) Two step estimation that can tolerate large M (prop. alphabet size): 

1. Estimate the variance of the phase → Estimate of the variance of d

2. Estimate 𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘 based on the estimated variance of d by using 
Bernstein’s inequality with statistical uncertainty 𝜇𝜇

3. Bound on Eve’s information via entropic uncertainty relation: 
𝐻𝐻min𝜖𝜖 𝑄𝑄 𝐸𝐸 ≥ − log 𝑐𝑐 𝛿𝛿 − 𝐻𝐻m𝑎𝑎𝑎𝑎𝜖𝜖 𝑃𝑃 𝐴𝐴
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≤ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑃𝑃𝑃𝑃 + 𝜇𝜇



Optimality of Key Rate Estimation based on 
Uncertainty Relation
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Finite-Key rate for reverse 
reconciliation (RR)

Finite-Key rate for direct 
reconciliation

Asymptotic key rate for RR

Optimal key rate in the 
asymptotic limit

 Gap between asymptotic key rate for RR to the optimal asymptotic key rate 
because of non-tightness of uncertainty relation



Fundamental Limit on Loss Tolerance due to 
Application of Uncertainty Relation

 Uncertainty relation with quantum memory is not tight for the setup
 Same state as for key rate plots

Limitation due to entropic uncertainty relation
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Gap (asymptotic limit)
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Conclusion and Outlook
 Security of CV QKD against coherent attacks for practical urban distances

Experimentally feasible:recent implementation of complete protocol for direct 
reconciliation (Gering et al, arXiv:1406.6174)

Error correction currently tested for important loss regime

 Threshold test and theorem

 allows to overcome estimation problems due to unbounded 
measurement range

 applies to  detector threshold problem (usual assumption on 
implementation) 

 Fundamental limitation due to entropic uncertainty relation 

→ need different approach for longer distances
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Thank you for your attention.

arXiv:1405.5965 
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