Composable security proof for CVQKD with coherent states

arXiv:1408.5689
Anthony Leverrier
Inria Paris-Rocquencourt

QCrypt 2014

Continuous-variable QKD with coherent states

QKD with continuous variables

- quite recent T.C. Ralph PRA $61010303(\mathrm{R})$ (1999)
- information encoded on the quadratures (X, P) of the EM field
- measured with homodyne / heterodyne (interferometric) detection
- infinite dimension \Rightarrow usual proof techniques don't apply

With coherent states

- much more practical!
- Alice sends coherent states $|\alpha\rangle$, with $\alpha \sim \mathcal{N}\left(0, V_{A}\right)_{\mathbb{C}}$
- Bob measures with homodyne or heterodyne detection
- no need for single-photon counters
- no need for squeezing, only standard telecom components

Implementations

- long distance
- stability

Jouguet et al, Nat. Photon. 7 378-381 (2013)

- commercial system

Cygnus : a commercial product by SeQureNet

What about the security of continuous-variable QKD?

Composable security in QKD (cf talk by R. Renner)

QKD protocol $=$ CPTP $\operatorname{map} \mathcal{E}$

$$
\begin{aligned}
\mathcal{E}: \quad \mathcal{H}_{A} \otimes \mathcal{H}_{B} & \rightarrow \mathcal{S}_{A} \otimes \mathcal{S}_{B} \otimes \mathcal{C} \\
\rho_{A B} & \mapsto
\end{aligned} \rho_{S_{A}, S_{B}, C} .
$$

Requirements

- correctness: $\mathbb{P}\left[S_{A} \neq S_{B}\right] \leq \epsilon_{\text {corr }}$
- secrecy: $\frac{1}{2}\left\|\rho_{S_{A} E}-\left(\frac{1}{2^{k}} \sum_{\vec{k}}|\vec{k}\rangle\langle\vec{k}|\right) \otimes \rho_{E}\right\|_{1} \leq \epsilon_{\mathrm{sec}}$
- \mathcal{E} is ϵ-secure if $\epsilon_{\mathrm{corr}}+\epsilon_{\mathrm{sec}} \leq \epsilon$
- robustness: $p_{\text {abort }}=\epsilon_{\text {rob }}$ (small!) if passive adversary

In other words, for any purification $|\Psi\rangle_{A B E}$ of $\rho_{A B}$,

$$
\left(\mathcal{E}_{A B} \otimes \operatorname{id}_{E}\right)|\Psi\rangle_{A B E} \approx_{\epsilon}\left[\frac{1}{2^{k}} \sum_{\vec{k}}|\vec{k}, \vec{k}\rangle\langle\vec{k}, \vec{k}|\right]_{A B} \otimes \rho_{E}
$$

where $\mathcal{H}_{A}, \mathcal{H}_{B}$ are n-mode Fock spaces.

Security proofs: state-of-the-art

Two main approaches:

1. Entropic uncertainty principle
2. [reduction: collective \Rightarrow general] + [Security against coll. attacks]

Entropic Uncertainty Principle

- tightest key rate for BB84 M. Tomamichel et al. Nat. Comm. 3634 (2012)
- successfully ported to the CV paradigm F. Furrer et al. PRL 109100502 (2012)
- compatible with reverse reconciliation
F. Furrer arXiv:1405.5965 (2014)
- experiment! T. Gehring, et al. arXiv:1406.6174 (2014)

but

- requires squeezing
- discrepancy with asymptotic secret key rate for Gaussian attacks
\Rightarrow not very tolerant to losses

Security proofs: state-of-the-art

Two main approaches:

1. Entropic uncertainty principle
2. [reduction: collective \Rightarrow general] + [Security against coll. attacks]

Collective attacks are optimal!

- de Finetti theorem
R. Renner, J.I. Cirac, PRL 102110504 (2009)
- "Postselection technique"

AL, R. García-Patrón, R. Renner, N.J. Cerf, PRL 110030502 (2013)
but no composable security proof against collective attacks
Current proofs against coll. attacks assume that the covariance matrix is given
M. Navascués, F. Grosshans, A. Acín PRL 97190502 (2006)
R. García-Patrón, N.J. Cerf PRL 97190503 (2006)

This talk: new protocol with assumption-free PE procedure

The protocol (reverse reconciliation, EB version)

Preparation

Alice prepares $2 n$ two-mode squeezed vacuum states: $|\Phi\rangle_{A A^{\prime}}^{\otimes 2 n}$.
In the P \& M version, she prepares $2 n$ coherent states (Gauss. modulation).

- Distribution: Collective attacks: $\left.\rho_{A B}^{\otimes 2 n}=\left(\mathrm{id}_{A} \otimes \mathcal{N}\right)(\Phi)\right)^{\otimes 2 n}$
- Measurement: with heterodyne detection $\Rightarrow X, Y \in \mathbb{R}^{4 n}$
- Discretization: $Y \mapsto U \in\{0,1\}^{4 d n}$
- Error Correction: Bob sends the syndrome of U for an ECC.
- Parameter Estimation: Alice computes $\|X\|^{2},\|Y\|^{2},\langle X, Y\rangle$
- PE test passes if $\left[\gamma_{a} \leq \Sigma_{a}^{\max }\right] \wedge\left[\gamma_{b} \leq \Sigma_{b}^{\max }\right] \wedge\left[\gamma_{c} \geq \Sigma_{c}^{\min }\right]$
- Privacy Amplification: random universal ${ }_{2}$ hashing $\Rightarrow S_{A}, S_{B}$

The protocol (reverse reconciliation, EB version)

- Preparation: $2 n$ two-mode squeezed vacuum states: $|\Phi\rangle_{A A^{\prime}}^{\otimes 2 n}$

Distribution

Alice sends register A^{\prime} to Bob. The quantum channel \mathcal{N} is i.i.d.

$$
\left.\Rightarrow \rho_{A B}^{\otimes 2 n}=\left(\mathrm{id}_{A} \otimes \mathcal{N}\right)(\Phi)\right)^{\otimes 2 n}
$$

- Measurement: with heterodyne detection $\Rightarrow X, Y \in \mathbb{R}^{4 n}$
- Discretization: $Y \mapsto U \in\{0,1\}^{4 d n}$
- Error Correction: Bob sends the syndrome of U for an ECC.
- Parameter Estimation: Alice computes $\|X\|^{2},\|Y\|^{2},\langle X, Y\rangle$
- PE test passes if $\left[\gamma_{a} \leq \Sigma_{a}^{\max }\right] \wedge\left[\gamma_{b} \leq \Sigma_{b}^{\max }\right] \wedge\left[\gamma_{c} \geq \Sigma_{c}^{\min }\right]$
- Privacy Amplification: random universal ${ }_{2}$ hashing $\Rightarrow S_{A}, S_{B}$

The protocol (reverse reconciliation, EB version)

- Preparation: $2 n$ two-mode squeezed vacuum states: $|\Phi\rangle_{A A^{\prime}}^{\otimes 2 n}$
- Distribution: Collective attacks: $\left.\rho_{A B}^{\otimes 2 n}=\left(\mathrm{id}_{A} \otimes \mathcal{N}\right)(\Phi)\right)^{\otimes 2 n}$

Measurement

Alice and Bob perform heterodyne detection on their respective $2 n$ modes

$$
\Rightarrow X, Y \in \mathbb{R}^{4 n}
$$

- Discretization: $Y \mapsto U \in\{0,1\}^{4 d n}$
- Error Correction: Bob sends the syndrome of U for an ECC.
- Parameter Estimation: Alice computes $\|X\|^{2},\|Y\|^{2},\langle X, Y\rangle$
- PE test passes if $\left[\gamma_{a} \leq \Sigma_{a}^{\max }\right] \wedge\left[\gamma_{b} \leq \Sigma_{b}^{\max }\right] \wedge\left[\gamma_{c} \geq \Sigma_{c}^{\min }\right]$
- Privacy Amplification: random universal ${ }_{2}$ hashing $\Rightarrow S_{A}, S_{B}$

The protocol (reverse reconciliation, EB version)

- Preparation: $2 n$ two-mode squeezed vacuum states: $|\Phi\rangle_{A A^{\prime}}^{\otimes 2 n}$
- Distribution: Collective attacks: $\left.\rho_{A B}^{\otimes 2 n}=\left(\mathrm{id}_{A} \otimes \mathcal{N}\right)(\Phi)\right)^{\otimes 2 n}$
- Measurement: with heterodyne detection $\Rightarrow X, Y \in \mathbb{R}^{4 n}$

Discretization

Bob discretizes his data with d bits per symbol:

$$
Y \mapsto U \in\{0,1\}^{4 d n}
$$

- Error Correction: Bob sends the syndrome of U for an ECC.
- Parameter Estimation: Alice computes $\|X\|^{2},\|Y\|^{2},\langle X, Y\rangle$
- PE test passes if $\left[\gamma_{a} \leq \Sigma_{a}^{\max }\right] \wedge\left[\gamma_{b} \leq \sum_{b}^{\max }\right] \wedge\left[\gamma_{c} \geq \Sigma_{c}^{\min }\right]$
- Privacy Amplification: random universal ${ }_{2}$ hashing $\Rightarrow S_{A}, S_{B}$

The protocol (reverse reconciliation, EB version)

- Preparation: $2 n$ two-mode squeezed vacuum states: $|\Phi\rangle_{A A^{\prime}}^{\otimes 2 n}$
- Distribution: Collective attacks: $\left.\rho_{A B}^{\otimes 2 n}=\left(\mathrm{id}_{A} \otimes \mathcal{N}\right)(\Phi)\right)^{\otimes 2 n}$
- Measurement: with heterodyne detection $\Rightarrow X, Y \in \mathbb{R}^{4 n}$
- Discretization: $Y \mapsto U \in\{0,1\}^{4 d n}$

Error Correction (before Parameter Estimation!)

- Bob sends the syndrome of U for an ECC.
- Alice outputs a guess \hat{U}.
- Alice and Bob compute a small hash of U and \hat{U} and abort if they differ.
- Parameter Estimation: Alice computes $\|X\|^{2},\|Y\|^{2},\langle X, Y\rangle$
- PE test passes if $\left[\gamma_{a} \leq \Sigma_{a}^{\max }\right] \wedge\left[\gamma_{b} \leq \sum_{b}^{\max }\right] \wedge\left[\gamma_{c} \geq \Sigma_{c}^{\min }\right]$
- Privacy Amplification: random universal ${ }_{2}$ hashing $\Rightarrow S_{A}, S_{B}$

The protocol (reverse reconciliation, EB version)

- Preparation: $2 n$ two-mode squeezed vacuum states: $|\Phi\rangle_{A A^{\prime}}^{\otimes 2 n}$
- Distribution: Collective attacks: $\left.\rho_{A B}^{\otimes 2 n}=\left(\mathrm{id}_{A} \otimes \mathcal{N}\right)(\Phi)\right)^{\otimes 2 n}$
- Measurement: with heterodyne detection $\Rightarrow X, Y \in \mathbb{R}^{4 n}$
- Discretization: $Y \mapsto U \in\{0,1\}^{4 d n}$
- Error Correction: Bob sends the syndrome of U for an ECC.

Parameter Estimation:

- Alice computes $\|X\|^{2},\|Y\|^{2},\langle X, Y\rangle$
- PE test passes if $\left[\gamma_{a} \leq \sum_{a}^{\max }\right] \wedge\left[\gamma_{b} \leq \sum_{b}^{\max }\right] \wedge\left[\gamma_{c} \geq \Sigma_{c}^{\min }\right]$

$$
\begin{gathered}
\gamma_{a}:=\frac{1}{2 n}\left[1+5 \sqrt{\frac{\log \left(24 / \epsilon_{\mathrm{PE}}\right)}{n}}\right]\|X\|^{2}-1 \quad \gamma_{b}:=\frac{1}{2 n}\left[1+5 \sqrt{\frac{\log \left(24 / \epsilon_{\mathrm{PE}}\right)}{n}}\right]\|Y\|^{2}-1 \\
\gamma_{c}:=\frac{1}{2 n}\langle X, Y\rangle-4 \sqrt{\frac{\log \left(96 / \epsilon_{\mathrm{PE}}\right)}{n^{3}}}\left[\|X\|^{2}+\|Y\|^{2}\right]
\end{gathered}
$$

- Privacy Amplification: random universal ${ }_{2}$ hashing $\Rightarrow S_{A}, S_{B}$

The protocol (reverse reconciliation, EB version)

- Preparation: $2 n$ two-mode squeezed vacuum states: $|\Phi\rangle_{A A^{\prime}}^{\otimes 2 n}$
- Distribution: Collective attacks: $\left.\rho_{A B}^{\otimes 2 n}=\left(\mathrm{id}_{A} \otimes \mathcal{N}\right)(\Phi)\right)^{\otimes 2 n}$
- Measurement: with heterodyne detection $\Rightarrow X, Y \in \mathbb{R}^{4 n}$
- Discretization: $Y \mapsto U \in\{0,1\}^{4 d n}$
- Error Correction: Bob sends the syndrome of U for an ECC.
- Parameter Estimation: Alice computes $\|X\|^{2},\|Y\|^{2},\langle X, Y\rangle$
- PE test passes if $\left[\gamma_{a} \leq \sum_{a}^{\max }\right] \wedge\left[\gamma_{b} \leq \Sigma_{b}^{\max }\right] \wedge\left[\gamma_{c} \geq \Sigma_{c}^{\min }\right]$

Privacy Amplification:

- Alice and Bob apply a random universal ${ }_{2}$ hash function to their respective strings.
- They obtain two strings S_{A} and S_{B} of size I.

Main result

Theorem

\mathcal{E} is ϵ-secure against collective attacks if $\epsilon=2 \epsilon_{\mathrm{sm}}+\bar{\epsilon}+\epsilon_{\mathrm{PE}}+\epsilon_{\mathrm{ent}}$ and
$I \leq 2 n\left[2 \hat{H}_{\mathrm{MLE}}(U)-f\left(\Sigma_{a}^{\max }, \Sigma_{b}^{\max }, \Sigma_{c}^{\min }\right)\right]-$ leak $_{\mathrm{EC}}-\Delta_{\mathrm{AEP}}-\Delta_{\text {ent }}-2 \log \frac{1}{2 \bar{\epsilon}}$,
where

- $\hat{H}_{\text {MLE }}(U)=$ empirical entropy of U (computed from the empirical probabilities)
- $\Delta_{\mathrm{AEP}}:=4 \log \left(2^{d / 2}+2\right) \sqrt{4 n \log _{2} 2 / \epsilon_{\mathrm{sm}}^{2}}$,
- $\Delta_{\text {ent }}:=\sqrt{8 n \log ^{2}(4 n) \log \left(2 / \epsilon_{\text {ent }}\right)}$
- $f=\chi(Y, E)$ for a Gaussian state with $\mathrm{CM}\left[\begin{array}{cc}\Sigma_{a}^{\max } \mathbb{1}_{2} & \Sigma_{c}^{\min } \sigma_{z} \\ \Sigma_{c}^{\min } \sigma_{z} & \Sigma_{b}^{\max } \mathbb{I}_{2}\end{array}\right]$
- asymptotic value: Gaussian attacks
- NEW TOOL: robust estimation of the CM without any assumption

Numerical results for $\epsilon=10^{-20}$ (for collective attacks)

Reasonable experimental parameters:

- distance $=1 \mathrm{~km}, 10 \mathrm{~km}, 50 \mathrm{~km}, 100 \mathrm{~km}$
- excess noise: 1% of shot noise
- reconciliation efficiency $\beta=90 \%$
- $\epsilon_{\mathrm{rob}} \approx 1 \%$ (prob. that the protocol aborts for a passive channel)

Parameter Estimation: the issue

To obtain a bound on $H_{\text {min }}^{\epsilon}(U \mid E)$, we need to compute a confidence region for the Covariance Matrix of $\rho_{A B}^{2 n}$.

A game

- $p(x)$ is an unknown probability distribution defined on \mathbb{R} with $\mathbb{E}[x]=0, \operatorname{Var}(x)=V$ unknown
- You observe n i.i.d. realisations: $x_{1}, x_{2}, \cdots, x_{n}$
- Can you upper-bound V ? i.e. find \hat{V} s.t. $\operatorname{Prob}(V \geq \hat{V}) \leq \epsilon$?

Parameter Estimation: the issue

To obtain a bound on $H_{\text {min }}^{\epsilon}(U \mid E)$, we need to compute a confidence region for the Covariance Matrix of $\rho_{A B}^{2 n}$.

A game

- $p(x)$ is an unknown probability distribution defined on \mathbb{R} with $\mathbb{E}[x]=0, \operatorname{Var}(x)=V$ unknown
- You observe n i.i.d. realisations: $x_{1}, x_{2}, \cdots, x_{n}$
- Can you upper-bound V ? i.e. find \hat{V} s.t. $\operatorname{Prob}(V \geq \hat{V}) \leq \epsilon$?

No! because x is a priori unbounded

Parameter Estimation: the issue

To obtain a bound on $H_{\text {min }}^{\epsilon}(U \mid E)$, we need to compute a confidence region for the Covariance Matrix of $\rho_{A B}^{2 n}$.

A game

- $p(x)$ is an unknown probability distribution defined on \mathbb{R} with $\mathbb{E}[x]=0, \operatorname{Var}(x)=V$ unknown
- You observe n i.i.d. realisations: $x_{1}, x_{2}, \cdots, x_{n}$
- Can you upper-bound V ? i.e. find \hat{V} s.t. $\operatorname{Prob}(V \geq \hat{V}) \leq \epsilon$?

No!
because x is a priori unbounded

Solutions

1. Assume a Gaussian distribution \Rightarrow no composable security...
2. Symmetrize the state!

Parameter Estimation as quantum tomography

Framework introduced by Christandl and Renner

- for discrete-variable QKD, symmetrization = random permutation
- variance of classical variable: to estimate $\|X\|^{2}$, use random rotation
- for CVQKD, symmetrization = conjugate random networks of beamsplitters and phase shifts to Alice's and Bob's $2 n$ modes

PE: an ideal (virtual) procedure

State symmetrization

Alice and Bob apply conjugate random networks of beamsplitters and phase-shifts to their modes
\Rightarrow new state $\tilde{\rho}^{2 n}$ with the same average covariance matrix

- Distribution to additional players: $\tilde{\rho}_{i}^{n}$ given to A_{i} and B_{i}
- Parameter Estimation: A_{1} and B_{1} compute a confidence region for $\tilde{\rho}_{2}^{n}$

PE: an ideal (virtual) procedure

- State symmetrization: with random optical networks

Distribution to additional players

Alice and Bob distribute $\tilde{\rho}_{1}^{n}$ corresponding to the first n modes of $\tilde{\rho}^{2 n}$ to A_{1} and B_{1}. Similarly, they give $\tilde{\rho}_{2}^{n}$ to A_{2} and B_{2}.

- Parameter Estimation: A_{1} and B_{1} compute a confidence region for $\tilde{\rho}_{2}^{n}$

PE: an ideal (virtual) procedure

- State symmetrization: with random optical networks
- Distribution to additional players: $\tilde{\rho}_{i}^{n}$ given to A_{i} and B_{i}

Parameter Estimation

A_{1} and B_{1} try to estimate the covariance matrix of $\tilde{\rho}_{2}^{n}$. Similarly, A_{2} and B_{2} compute a confidence region for that of $\tilde{\rho}_{1}^{n}$.

Parameter Estimation: additional parties

Parameter Estimation: additional parties

Parameter Estimation: additional parties

- A_{1} and B_{1} try to estimate the covariance matrix of $\rho_{A_{2} B_{2}}$

Parameter Estimation: additional parties

- A_{1} and B_{1} try to estimate the covariance matrix of $\rho_{A_{2} B_{2}}$

Parameter Estimation: additional parties

- A_{1} and B_{1} try to estimate the covariance matrix of $\rho_{A_{2} B_{2}}$
- A_{2} and B_{2} try to estimate the covariance matrix of $\rho_{A_{1} B_{1}}$

Parameter Estimation: additional parties

- A_{1} and B_{1} try to estimate the covariance matrix of $\rho_{A_{2} B_{2}}$
- A_{2} and B_{2} try to estimate the covariance matrix of $\rho_{A_{1} B_{1}}$
- By combining both estimates, one can compute a lower bound for the key size.
- Crucially, Alice can efficiently simulate both the symmetrization and the distribution to additional parties.

Parameter Estimation: simulation is enough

- A_{1} and B_{1} want to estimate the CM of $\rho_{A_{2} B_{2}}$:
- they have access to heterodyne measurement results: $\vec{X}_{1}=\left(x_{1}, \ldots, x_{2 n}\right), \vec{Y}_{1}=\left(y_{1}, \ldots, y_{2 n}\right)$
- Lemma 1: it is sufficient to know $\left\|\vec{X}_{1}\right\|^{2},\left\|\vec{Y}_{1}\right\|^{2},\left\langle\vec{X}_{1}, \vec{Y}_{1}\right\rangle$

Parameter Estimation: simulation is enough

- A_{1} and B_{1} want to estimate the CM of $\rho_{A_{2} B_{2}}$:
- they have access to heterodyne measurement results: $\vec{X}_{1}=\left(x_{1}, \ldots, x_{2 n}\right), \vec{Y}_{1}=\left(y_{1}, \ldots, y_{2 n}\right)$
- Lemma 1: it is sufficient to know $\left\|\vec{X}_{1}\right\|^{2},\left\|\vec{Y}_{1}\right\|^{2},\left\langle\vec{X}_{1}, \vec{Y}_{1}\right\rangle$
- Alice knows $\|\vec{X}\|^{2},\|\vec{Y}\|^{2},\langle\vec{X}, \vec{Y}\rangle$
- Lemma 2: she can infer a confidence region for $\left\|\vec{X}_{1}\right\|^{2},\left\|\vec{Y}_{1}\right\|^{2},\left\langle\vec{X}_{1}, \vec{Y}_{1}\right\rangle$

Parameter Estimation: simulation is enough

- A_{1} and B_{1} want to estimate the CM of $\rho_{A_{2} B_{2}}$:
- they have access to heterodyne measurement results: $\vec{X}_{1}=\left(x_{1}, \ldots, x_{2 n}\right), \vec{Y}_{1}=\left(y_{1}, \ldots, y_{2 n}\right)$
- Lemma 1: it is sufficient to know $\left\|\vec{X}_{1}\right\|^{2},\left\|\vec{Y}_{1}\right\|^{2},\left\langle\vec{X}_{1}, \vec{Y}_{1}\right\rangle$
- Alice knows $\|\vec{X}\|^{2},\|\vec{Y}\|^{2},\langle\vec{X}, \vec{Y}\rangle$
- Lemma 2: she can infer a confidence region for $\left\|\vec{X}_{1}\right\|^{2},\left\|\vec{Y}_{1}\right\|^{2},\left\langle\vec{X}_{1}, \vec{Y}_{1}\right\rangle$

Theorem

- Alice can simulate A_{1} and B_{1} efficiently. (as well as A_{2} and B_{2})
- she gets a lower bound for $H_{\min }^{\epsilon}(U \mid E)$

Conclusion

Composable security of CVQKD with coherent states

- main new tool: PE procedure for covariance matrices
- almost all the raw key is used to distill the secret key
- fairly tight security bound against collective attacks

Open questions

- improve (a lot!) the reduction from general to collective attacks
- when is the symmetrization required? when can it be simulated?

Other applications for the parameter estimation procedure

- quantify bipartite CV entanglement without any assumptions

