Practical relativistic bit commitment

T. Lunghi ${ }^{1}$, J. Kaniewski ${ }^{2}$, F. Bussières ${ }^{1}$, R. Houlmann ${ }^{1}$, M. Tomamichel ${ }^{2}$, S. Wehner ${ }^{2}$, H. Zbinden ${ }^{1}$
${ }^{1}$ Group of Applied Physics, University of Geneva, Switzerland
${ }^{2}$ Centre for Quantum Technologies, National University of Singapore, Singapore

QCrypt'14, Paris, France
 1 September 2014

UNIVERSITÉ
DE GENĖVE

Outline

．

品 0
 ｜｜
\square
\square
－
$+$

号
 \qquad
\qquad
\qquad

Outline

- What is a commitment scheme?
- Why relativistic?
- Short story of relativistic bit commitment
- Two-round protocol by Simard (limited commitment time)
- A new multi-round protocol (arbitrarily long commitment)
- Two and more rounds in practice

Commitment scheme - ideal functionality

Commit phase

Open phase

Commitment scheme - ideal functionality

Commit phase

Open phase

Commitment scheme - ideal functionality

Commit phase

Open phase

Commitment scheme - ideal functionality

Commit phase

Open phase

Commitment scheme - cheating objectives

The commit phase is over...

Commitment scheme - cheating objectives

Bob goes mad!

Commitment scheme - cheating objectives

He wants to break the safe and read the message!

Commitment scheme - cheating objectives

Alice goes mad!

Commitment scheme - cheating objectives

She wants to influence the message and change her commitment!

Bit commitment - security models

Bit commitment - security models

Angry Alice:

"don't want

to commit!"

Bit commitment - security models

Angry Alice:

"don't want

to commit!"
 open both $d=0$ and $d=1$
with (reasonably)
high probabilities

Bit commitment - security models

Security for honest Bob as a game

(1) Alice performs a generic commit strategy
(2) Alice is challenged to open one of the bits with equal probabilities
(3) Alice wins iff Bob accepts the commitment

Bit commitment - security models

Security for honest Bob as a game

(1) Alice performs a generic commit strategy
(2) Alice is challenged to open one of the bits with equal probabilities
(3) Alice wins iff Bob accepts the commitment

Want: $\mathrm{p}_{\text {win }} \leq \frac{1}{2}+\varepsilon$ for all strategies of dishonest Alice Ideally, ε should be exponentially small in number of bits exchanged
[Note that $2 p_{\text {win }}=p_{0}+p_{1}$ for $p_{d}=$ "probability that Alice successfully unveils d "
\Longrightarrow equivalent to the usual requirement $p_{0}+p_{1} \leq 1+2 \varepsilon$]

Why relativistic?

Why relativistic?

Why relativistic?

Why relativistic?

For two rounds (classical or quantum) Relativistic \equiv Two isolated provers
\Longrightarrow compact, tractable description

More rounds?

More rounds?

Communication constraints

More rounds?

Communication constraints

allow more than | | \bullet | \bullet |
| :--- | :--- | :--- |

but less than

More rounds?

Communication constraints

but less than

No simple description in terms of non-communication models...

Short story of relativistic bit commitment

Short story of relativistic bit commitment

- First two-round protocol proposed by Ben-Or et al. in 1988; established security against classical adversaries
- First multi-round protocol proposed by Kent in 1999 arbitrary length but exponential blow-up in communication
- Further combined with a compression scheme to achieve constant communication rate [Kent'05]
- Simard in 2007 simplified the protocol by Ben-Or et al. and proved security against a restricted class of quantum attacks
- Two (two-round) quantum protocols by Kent in 2011 and 2012 rely on inherently quantum features (no-cloning/monogamy of correlations)

How did it all start?

How did it all start?

Goal: a multi-round protocol which

- has a rigorous security proof
- can be implemented using currently available technology
- can achieve commitment time longer than 42 ms

How did it all start?

Goal: a multi-round protocol which

- has a rigorous security proof
- can be implemented using currently available technology
- can achieve commitment time longer than 42 ms

Our contributions:

- Security of Simard's protocol against the most general quantum attack
- New multi-round protocol and a security proof against classical adversaries
- Experimental implementation of both schemes

Two-round protocol [Simard]

a - private randomness of Alice
b - private randomness of Bob
$a, b \in_{R}\{0,1\}^{n}$

Two-round protocol [Simard]

Commit

$0 \cdot b=0$
$1 \cdot b=b$
a - private randomness of Alice
b - private randomness of Bob
$a, b \in_{R}\{0,1\}^{n}$

Two-round protocol [Simard]

Commit

$0 \cdot b=0$
$1 \cdot b=b$
a - private randomness of Alice
b - private randomness of Bob
$a, b \in_{R}\{0,1\}^{n}$

Open

accept iff $y_{1} \oplus y_{2}=d \cdot b$

Two-round protocol [Simard]

Commit

a - private randomness of Alice
b - private randomness of Bob
$a, b \in_{R}\{0,1\}^{n}$

Open

accept iff $y_{1} \oplus y_{2}=d \cdot b$

Security for honest Alice guaranteed by the XOR

Two-round protocol [Simard]

Commit

a - private randomness of Alice
b - private randomness of Bob $a, b \in_{R}\{0,1\}^{n}$

Open

accept iff $y_{1} \oplus y_{2}=d \cdot b$

Security for honest Alice guaranteed by the XOR

Security for honest Bob more complicated...

Two-round protocol - honest Bob

Two-round protocol - honest Bob

Two-round protocol - honest Bob

win iff $y_{1} \oplus y_{2}=d \cdot b$

Two-round protocol - honest Bob

win iff $y_{1} \oplus y_{2}=d \cdot b$
Classically: $\mathrm{p}_{\text {win }}=\frac{1}{2}+\frac{1}{2^{n}}$
Quantumly: $\mathrm{p}_{\text {win }} \leq \frac{1}{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2^{n}}}$ [Sikora, Chailloux, Kerenidis'14]

Two-round protocol - honest Bob

Two-round protocol - honest Bob

win iff $y_{1} \oplus y_{2}=d \cdot b$
Classically: $\mathrm{p}_{\text {win }} \stackrel{(\text { tight }}{=} \frac{1}{2}+\frac{1}{2^{n}}$
exponential decay conjectured to be (essentially) tight
Quantumly: $p_{\text {win }} \leq \frac{1}{2}+\frac{1}{\sqrt{2}} \cdot \underbrace{\frac{1}{\sqrt{2^{n}}}}_{\text {quantum-classical gap }}$ [Sikora, Chailloux, Kerenidis'14] quantum adversary strictly more powerful

A new multi-round protocol

$$
\begin{aligned}
& a_{k}, b_{k} \in_{R}\{0,1\}^{n} \\
& \text { consecutive rounds must } \\
& \text { be space-like separated }
\end{aligned}
$$

A new multi-round protocol

$a_{k}, b_{k} \in R\{0,1\}^{n}$ consecutive rounds must be space-like separated

A new multi-round protocol

$$
a_{k}, b_{k} \in_{R}\{0,1\}^{n} .
$$

consecutive rounds must be space-like separated

A new multi-round protocol

$$
a_{k}, b_{k} \in_{R}\{0,1\}^{n}
$$

consecutive rounds must
be space-like separated

< finite field multiplication over $G F\left(2^{n}\right)$

A new multi-round protocol

$$
a_{k}, b_{k} \in_{R}\{0,1\}^{n}
$$

consecutive rounds must be space-like separated

- finite field multiplication over $G F\left(2^{n}\right)$

A new multi-round protocol

$$
a_{k}, b_{k} \in_{R}\{0,1\}^{n}
$$

consecutive rounds must be space-like separated

A new multi-round protocol

$$
y_{m}=a_{m-1} * b_{m} \oplus a_{m}
$$

Security for honest Alice guaranteed by the XOR

$$
a_{k}, b_{k} \in_{R}\{0,1\}^{n}
$$

consecutive rounds must
be space-like separated be space-like separated

- finite field multiplication over $G F\left(2^{n}\right)$

$$
\text { Open } \quad d, y_{m+1}=a_{m}
$$

accept iff $V\left(d, b_{1}, y_{1}, \ldots, b_{m}, y_{m}, y_{m+1}\right)=1$

A new multi-round protocol

$$
a_{k}, b_{k} \in_{R}\{0,1\}^{n}
$$

consecutive rounds must be space-like separated

Security for honest Alice guaranteed by the XOR

$$
\text { Open } \quad d, y_{m+1}=a_{m}
$$

Security for honest Bob more complicated...

A new multi-round protocol - honest Bob

Quantumly: causal constraints make the analysis very hard... Classically: shared randomness doesn't help; deterministic strategies "flatten" the causal structure to give a multi-prover model

A new multi-round protocol - honest Bob

A new multi-round protocol - honest Bob

check whether $V\left(d, b_{1}, y_{1}, \ldots, b_{m}, y_{m}, y_{m+1}\right)=1$

A new multi-round protocol - honest Bob

check whether $V\left(d, b_{1}, y_{1}, \ldots, b_{m}, y_{m}, y_{m+1}\right)=1$ this reduction is exact - same optimal winning probability

A new multi-round protocol - honest Bob

Conclusions:

- End up with a complicated game of $m+1$ non-communicating players; exact cheating probability is hard to calculate.
- Can be relaxed to the problem of computing a certain function in the "Number on the Forehead" model.
- This class of problems is well-studied in computer science and has profound implications. It is believed to be hard (which would imply that cheating is difficult) but only weak bounds are known.
- Equivalent to counting the number of zeroes of a certain family of multivariate polynomial over finite field $G F\left(2^{n}\right)$.

A new multi-round protocol - honest Bob

Final result: Security for honest Bob with $\varepsilon \approx 2^{-n / 2^{m}}$.

- Security deteriorates drastically as m increases.
- Looks very similar to communication complexity lower bounds for this model: $\Omega\left(\frac{n}{2^{m}}\right)$.
- In principle, an arbitrary long commitment is possible (at the price of very large n).
- In practice, technology puts a limit on n so the commitment time is limited.

Two-round experiment

Time \uparrow

Two-round experiment

Time \uparrow

Two-round experiment

Time

Commitment bit

Two-round experiment

Time \uparrow
|

Two-round experiment

Time \uparrow

Two-round experiment

Time \uparrow

Two-round experiment

Time \uparrow

Multi-round experiment

> Time \uparrow
> $d \cdot \mathbf{b}_{1} \oplus \mathbf{a}_{1}$
> b_{1}

Multi-round experiment

Multi-round experiment

Multi-round experiment

Multi-round experiment

Security parameter

Two-rounds RBC

Multi-rounds RBC

Provably secure against quantum adversary

Provably secure against classical adversary

Security parameter

Two-rounds RBC
[Quantum adversary]

$$
\varepsilon_{n}=\frac{1}{\sqrt{2}} 2^{-n / 2}
$$

Multi-rounds RBC

 [Classical adversary]$$
\begin{gathered}
\varepsilon_{n, m}=\frac{1+\sqrt{1+2^{n+2}\left(2^{n}-1\right) \varepsilon_{n, m-1}}}{2^{n+1}} \\
\varepsilon_{n, 1}=2^{-n}
\end{gathered}
$$

$\mathrm{n}=$ number of bits
$\mathrm{m}=$ number of rounds

Security parameter

Two-rounds RBC [Quantum adversary]

$$
\varepsilon_{n}=\frac{1}{\sqrt{2}} 2^{-n / 2}
$$

$\mathrm{n}=$ number of bits
$\mathrm{m}=$ number of rounds

Multi-rounds RBC

 [Classical adversary]$\varepsilon_{n, m}=\frac{1+\sqrt{1+2^{n+2}\left(2^{n}-1\right) \varepsilon_{n, m-1}}}{2^{n+1}}$

Security parameter

Two-rounds RBC [Quantum adversary]

$$
\varepsilon_{n}=\frac{1}{\sqrt{2}} 2^{-n / 2}
$$

$\mathrm{n}=$ number of bits
$\mathrm{m}=$ number of rounds

Multi-rounds RBC

 [Classical adversary]$\varepsilon_{n, m}=\frac{1+\sqrt{1+2^{n+2}\left(2^{n}-1\right) \varepsilon_{n, m-1}}}{2^{n+1}}$

Node

Node

Time for one round: $\sim 6.1 \mu \mathrm{~s}$

Node

Frequency synchronization
Time for one round: $\sim 6.1 \mu \mathrm{~s}$

Experimental realization

Bern
Geneva

$$
\frac{l}{c}=437 \mu s
$$

Experimental realization

Bern

Timing matters: clock uncertainty

Synchronization between two GPS-clocks

Timing matters: clock uncertainty

Synchronization between two GPS-clocks

Clock uncertainty: 150 ns

Timing matters: clock uncertainty

Synchronization between two GPS-clocks

Clock uncertainty: 150 ns

Commitment time between two rounds

Timing matters: clock uncertainty

Synchronization between two GPS-clocks

Clock uncertainty: 150 ns

Commitment time between two rounds

Timing matters: clock uncertainty

Synchronization between two GPS-clocks

Timing matters: clock uncertainty

Synchronization between two GPS-clocks

Timing matters: clock uncertainty

Synchronization between two GPS-clocks

Clock uncertainty: 150 ns

Commitment time between two rounds

$$
437-6.1-0.15-t_{\text {buff }}=
$$

Timing matters: clock uncertainty

Synchronization between two GPS-clocks

Timing matters: clock uncertainty

Synchronization between two GPS-clocks

Timing matters: clock uncertainty

Synchronization between two GPS-clocks

Clock uncertainty: 150 ns

Commitment time between two rounds

$$
437-6.1-0.15-\mathrm{t}_{\text {buff }}=400 \mu \mathrm{~s} \times 5
$$

2 ms of commitment

Relativistic Bit commitment: how far we can go?

Relativistic Bit commitment: how far we can go?

Conclusions

- Bit commitment provably secure using only relativistic constraints against quantum and classical adversary.
- Commitment time is not limited by the distance between the two locations (against a classical adversary)
- Even if the multi-round bound allows to sustain only few rounds the commitment, we can perform long commitment with a simple setup.

Funding
QSIT-Quantum Science and Technology Ministry of Education and National Research Foundation Singapore

SINGLE PHOTON WORKSHOP 2015

University of Geneva
July $13^{\text {th }}$ to July $17^{\text {th }} 2015$
Save the date!

SINGLE PHOTON WORKSHOP

University of Geneva

$$
\text { July } 13^{\text {th }} \text { to July } 17^{\text {th }} 2015
$$

Wednesday 11:30
Device-independent uncertainty for binary observables Jedrzej Kaniewski, et al.
54) [Area 3] Practical QKD over 307 Km, Boris Korzh, et al.
71) [area 4] A Convenient Countermeasure against Detector Blinding Attacks for Practical QKD, Charles Ci Wen Lim, et al.

Wednesday 11:30
Device-independent uncertainty for binary observables
Jedrzej Kaniewski, et al.
71) [area 4] A Convenient Countermeasure against Detector Blinding Attacks for Practical QKD, Charles Ci Wen Lim, et al.

54 [Area 3] Practical QKD over 307 Km, Boris Korzh, et al.

Experimental realization

Bern

Geneva

