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Commitment scheme – cheating objectives

She wants to influence the message and change her commitment!
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Bit commitment – security models

Security for honest Bob as a game
1 Alice performs a generic commit strategy
2 Alice is challenged to open one of the bits with equal

probabilities
3 Alice wins iff Bob accepts the commitment

Want: pwin ≤ 1
2 + ε for all strategies of dishonest Alice

Ideally, ε should be exponentially small in number of bits exchanged

[Note that 2 pwin = p0 + p1 for pd = “probability that Alice successfully unveils d”

=⇒ equivalent to the usual requirement p0 + p1 ≤ 1+ 2ε]
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Short story of relativistic bit commitment

First two-round protocol proposed by Ben-Or et al. in 1988;
established security against classical adversaries
First multi-round protocol proposed by Kent in 1999
arbitrary length but exponential blow-up in communication
Further combined with a compression scheme to achieve
constant communication rate [Kent’05]
Simard in 2007 simplified the protocol by Ben-Or et al. and
proved security against a restricted class of quantum attacks
Two (two-round) quantum protocols by Kent in 2011 and 2012
rely on inherently quantum features (no-cloning/monogamy of
correlations)
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Goal: a multi-round protocol which
has a rigorous security proof
can be implemented using currently available technology
can achieve commitment time longer than 42ms

Our contributions:
Security of Simard’s protocol against the most general
quantum attack
New multi-round protocol and a security proof against
classical adversaries
Experimental implementation of both schemes
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Two-round protocol [Simard]

a – private randomness of Alice
b – private randomness of Bob
a, b ∈R {0, 1}n
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b

y1 = d · b ⊕ a

bitwise AND
0 · b = 0
1 · b = b

XOR
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d , y2 = a

accept iff y1 ⊕ y2 = d · b

Security for honest Alice
guaranteed by the XOR

Security for honest Bob
more complicated...
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Two-round protocol – honest Bob

b ∈R {0, 1}n d ∈R {0, 1}
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Classically: pwin = 1
2 + 1

2n

Quantumly: pwin ≤ 1
2 + 1√

2
· 1√

2n [Sikora, Chailloux, Kerenidis’14]

(tight)

exponential decay
conjectured to be
(essentially) tight

quantum-classical gap
quantum adversary strictly more powerful
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A new multi-round protocol
ak , bk ∈R {0, 1}n
consecutive rounds must
be space-like separated

Commit b1

y1 = d · b1 ⊕ a1
Sustain b2

y2 = a1 ∗ b2 ⊕ a2

finite field multiplication
over GF (2n)

bm

ym = am−1 ∗ bm ⊕ am
Open d , ym+1 = am

accept iff V (d , b1, y1, . . . , bm, ym, ym+1) = 1
Security for honest Alice
guaranteed by the XOR

Security for honest Bob
more complicated...
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A new multi-round protocol – honest Bob

Conclusions:
End up with a complicated game of m + 1
non-communicating players; exact cheating probability is
hard to calculate.
Can be relaxed to the problem of computing a certain function
in the “Number on the Forehead” model.
This class of problems is well-studied in computer science and
has profound implications. It is believed to be hard (which
would imply that cheating is difficult) but only weak bounds
are known.
Equivalent to counting the number of zeroes of a certain
family of multivariate polynomial over finite field GF (2n).



A new multi-round protocol – honest Bob

Final result: Security for honest Bob with ε ≈ 2−n/2m .
Security deteriorates drastically as m increases.
Looks very similar to communication complexity lower
bounds for this model: Ω( n

2m ).
In principle, an arbitrary long commitment is possible (at the
price of very large n).
In practice, technology puts a limit on n so the commitment
time is limited.
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• Bit commitment provably secure using only relativistic constraints 
against quantum and classical adversary. 
 

• Commitment time is not limited by the distance between the two 
locations (against a classical adversary) 
 

• Even if the multi-round bound allows to sustain only few rounds the 
commitment, we can perform long commitment with a simple setup. 
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