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Introduction

● The photon loss limits long distance QKD.
  

Loss 

Transmission probability

η

1−η
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Introduction

Takeoka, Guha, Wilde, arXiv:1310.0129; IEEE Trans. Inf. Theo. 60 4987 (2014).
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Scarani et al., Rev. Mod. Phys. 81, 1301 (2009)

● General unpper bound on the secure key rate

● Exponential decay with distance

Secure key rate R ~ η

η=e−Ltot / L0

R≤log2(
1+η
1−η

)∼2.88η

(η≪1)
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Introduction
● Quantum Repeater

1st generation

2nd generation

3rd generation

purification

quantum error correction/noise

Muralidharan, Kim, Lütkenhaus, Lukin, Jiang, PRL 112, 250501 (2014)

QECC for operational errors

QECC for loss

One Way Communication

Classical communication  

Two Way Communication

total distance L
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Introduction
● Quantum Repeater

1st generation

2nd generation

3rd generation

purification

quantum error correction/noise

Muralidharan, Kim, Lütkenhaus, Lukin, Jiang, PRL 112, 250501 (2014)

QECC for operational errors

QECC for loss

One Way Communication

Classical communication  

Two Way Communication

total distance L
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l
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c
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Chain of lossy channels and black boxes

???
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Introduction

● Classical Communication
Phase insensitive amplifier (PIA) extends transmission distance
 

● Quantum Communication: 
3rd generation quantum repeater

PIAPIA PIAPIA PIAPIA

Lossy channel Lossy channel Lossy channel

Chain of lossy channels and black boxes

???

What could those black boxes be?



7

Single center station between lossy channel

How does a center station modify the total channel?
● Simplest tool box: Gaussian operations
               

● Could phase insensitive amplifiers (PIA) or generally 
Gaussian quantum channels work as a quantum 
repeater?

Chain of lossy channels and black boxes

?
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Single center station between lossy channel

How does a center station modify the total channel?
● Simplest tool box: Gaussian operations
               

● Could phase insensitive amplifiers (PIA) or generally 
Gaussian quantum channels work as a quantum 
repeater? No!

Chain of lossy channels and black boxes

?
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Gaussian states

 

γ

d-mode bosonic fieldn

Quantum states of Light: harmonic oscillators 
p

x

d=[
❑
❑
❑
❑
] 2n

2n×2n

● Displacement vector        

● Covariance matrix          

canonical uncertainty relation

Δ xΔ p≥1 /2

γ=[
❑
❑
❑
❑

❑
❑
❑
❑

❑
❑
❑
❑

❑
❑
❑
❑
]

In Identity matrix:

σ :=( 0I n
I n
0)γ≥ i

2
σ ,
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Gaussian channels

d '=KT d ,
γ '=K T γ K+α

(K ,α )(γ , d) (γ ' , d ')

Def. Transform Gaussian states to Gaussian states

2n×2n

(K ,α ) = (Gain, Noise)

canonical uncertainty relationK=[
❑
❑
❑
❑
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❑
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❑
❑
❑
] α=[
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❑
❑
❑

❑
❑
❑
❑

❑
❑
❑
❑

❑
❑
❑
❑
]

In Identity matrix:

σ :=( 0I n
I n
0)γ≥ i

2
σ ,
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Gaussian channels

d '=KT d ,
γ '=K T γ K+α

(K ,α )(γ , d) (γ ' , d ')

Def. Transform Gaussian states to Gaussian states

Physical Condition for channels

2n×2n

(K ,α ) = (Gain, Noise)

canonical uncertainty relation2n×2n canonical uncertainty relationK=[
❑
❑
❑
❑

❑
❑
❑
❑

❑
❑
❑
❑

❑
❑
❑
❑
] α=[

❑
❑
❑
❑

❑
❑
❑
❑

❑
❑
❑
❑

❑
❑
❑
❑
]

α≥ i
2
(σ−K TσK )

In Identity matrix:

σ :=( 0I n
I n
0)γ≥ i

2
σ ,
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Gaussian channels

d '=KT d ,
γ '=K T γ K+α

(K ,α )(γ , d) (γ ' , d ')

Def. Transform Gaussian states to Gaussian states

(K ,α ) = (Gain, Noise)

● Multi-mode Pure lossy channels; transmission η

γ '

n−ModeVacuum
1
2
I n

γ
d '=√η d ,

γ '=
1−η
2

I2n+η γ

K=√η I 2n , α=
1−η
2

I 2n .
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Setting

● Gaussian channel sandwiched between lossy 
channel segment
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Main theorem

The main result of this paper is schematically depicted in Fig. 1. We consider a pure-loss optical channel A with
a given amount of total end-to-end (A to B) transmittance 2 (0; 1]. Let us place a Gaussian center station|a
quantum channel, or a completely-positive trace-preserving (TPCP) map, NC1!C2G |somewhere in the middle,
thereby splitting A into two pure-loss segments A1 (A to C1), and A2 (C2 to B), such that 12 = . We show
that the overall TPCP map from A to B is unaffected by the transformation showed in Fig. 1(a), which replaces 
the Gaussian center station NC1!C2 G by a Gaussian operation N1G A!A1 at the input of the channel and a 
Gaussian operation N2G B1!B at the output of the channel. By applying this transformation recursively, it is easy 
to see that one can replace any number of Gaussian center stations interspersed through the lossy channel A 
into two Gaussian operations, at the input and the output, respectively (Fig. 1(b)). The key implications of our 
results are summarized below:

● Decomposition of Gaussian center station
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Total loss is collected 
into the center of channel
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Main theorem

The main result of this paper is schematically depicted in Fig. 1. We consider a pure-loss optical channel A with
a given amount of total end-to-end (A to B) transmittance 2 (0; 1]. Let us place a Gaussian center station|a
quantum channel, or a completely-positive trace-preserving (TPCP) map, NC1!C2G |somewhere in the middle,
thereby splitting A into two pure-loss segments A1 (A to C1), and A2 (C2 to B), such that 12 = . We show
that the overall TPCP map from A to B is unaffected by the transformation showed in Fig. 1(a), which replaces 
the Gaussian center station NC1!C2 G by a Gaussian operation N1G A!A1 at the input of the channel and a 
Gaussian operation N2G B1!B at the output of the channel. By applying this transformation recursively, it is easy 
to see that one can replace any number of Gaussian center stations interspersed through the lossy channel A 
into two Gaussian operations, at the input and the output, respectively (Fig. 1(b)). The key implications of our 
results are summarized below:

● Decomposition of Gaussian center station

The operation at
 the receiver end is unitary 

Total loss is collected 
into the center of channel
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Implication for many stations

-Effect of loss cannot be reduced!
-Cannot be improved by Interspersing many stations!

★ No difference in Gaussian or Non-Gaussian input states



18

● Center station → Modification of transmitter and receiver. 

No-Go result for Gaussian repeater

Choice
of Input 
states

Choice
of Input 
states

Measurement

Measurement
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● Center station → Modification of transmitter and receiver. 

No-Go result for Gaussian repeater

Input source

Choice
of Input 
states

Choice
of Input 
states

Measurement

Measurement
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● Center station → Modification of transmitter and receiver. 

No-Go result for Gaussian repeater

Input source Receiver settings

Choice
of Input 
states

Choice
of Input 
states

Measurement

Measurement
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● Center station → Modification of transmitter and receiver. 

No-Go result for Gaussian repeater

Input source Receiver settings

Choice
of Input 
states

Choice
of Input 
states

Measurement

Measurement

Another protocol with the original lossy channel!
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● Center station → Modification of transmitter and receiver. 

General bound of the secure key rate 

can be applied.
[Takeoka, Guha, Wilde,arXiv:1310.0129]

No-Go result for Gaussian repeater

Input source Receiver settings

Choice
of Input 
states

Choice
of Input 
states

Measurement

Measurement

R≤log2(
1+η
1−η

)∼2.88η

Another protocol with the original lossy channel!
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● The performance may or may not improve 

    if the transmitter and receiver are the same.

Choice
of Input 
states

Measurement

Choice
of Input 
states

Measurement

Different 
channels!

Remarks
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Remarks

● The performance may or may not improve 

    if the transmitter and receiver are the same.

● Mathematically equivalent, not technically or economically.

 Equivalent
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Remarks

● The performance may or may not improve 

    if the transmitter and receiver are the same.

● Mathematically equivalent, not technically or economically.

PIAPIA PIAPIA PIAPIA

Lossy channel Lossy channel Lossy channel

-Classical Communication
Phase insensitive amplifier (PIA) extends transmission distance
 

 Equivalent
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Single center station between lossy channels

As a single module.... ?

Equivalent
decomposition

● How does a center station modify the total channel?

-Single-mode Gaussian channels
-Entanglement breaking (EB) conditions
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Single center station between lossy channels

● How does a center station modify the total channel?

-Single-mode Gaussian channels
-Entanglement breaking (EB) conditions

Break any quantum correlation

Curty, Lewenstein & Lütkenhaus, Phys. Rev. Lett. 92, 217903 (2004).

As a single module....

No entanglement / No secret key

?
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Single center station between lossy channels

● How does a center station modify the total channel?

-Single-mode Gaussian channels
-Entanglement breaking (EB) conditions
EB center station yields total EB channel.
All we have to concern about is non-EB center stations!

As a single module.... EB

Non-EBNon-EB

Pure lossy channels are not entanglement breaking
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Single-mode Gaussian channels

● Unitary equivalent classification

Sufficient to consider two standard forms! 

(K s ,α s)={(K PIC ,α PIC)

(K ANC ,α ANC)

Holevo, Probl. Inf. Trans., 43, 1 (2007); Probl. Inf. Trans., 44, 171 (2008)

(K ,α ) (K s ,α s)V U

decompose

Standard form + Unitary

(K I ,α I)

(K II ,αII)

(I) Phase insensitive channel (PIC)
(II) Additive noise channel (ANC)
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Non-entanglement breaking center stations

(I) Phase insensitive channel (PIC)

– Phase insensitive amplification/attenuation

Phase insensitive noise addition

(II) Additive noise channel (ANC)

– Addition of a rank-1 noise

Holevo, Probl. Inf. Trans., 43, 1 (2007); Probl. Inf. Trans., 44, 171 (2008)

(K I ,αI)

(K II ,α II )



31

Single-mode Gaussian channels

● Unitary equivalent classification

Sufficient to consider two standard forms! 

● Entanglement breaking (EB) conditions:  

(K s ,α s)={(K PIC ,α PIC)

(K ANC ,α ANC)

Holevo, Probl. Inf. Trans., 43, 1 (2007); Probl. Inf. Trans., 44, 171 (2008)

(K ,α ) (K s ,α s)V U

decompose

Standard form + Unitary

(K I ,α I)

(K II ,αII)

(K PIC ,α PIC)

(K ANC ,α ANC)

V U

UV

≡

≡

√det (αPIC)≥
1
2
(1+g η1η2)

√det (αANC)≥
1
2
(1+η1η2)
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Examples: Quantum limited amplifiers

● Squeezer (Phase sensitive amplifier:PSA)

● Quantum-limited phase insensitive amplifier (PIA)

Δ p2

Δ x2
=(√G−√G−1

√G+√G−1 )
2

, G≥1

S
K=Diag [√G+√G−1 ,√G−√G−1]
α=0

S

S

Unitary equivalent to a pure lossy channel
⇒　 Not EB!

η2=1

η1=1
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● Squeezer (Phase sensitive amplifier:PSA)

EB if the gain fulfils

● Quantum-limited phase insensitive amplifier (PIA)

S

Δ p2

Δ x2
=(√G−√G−1

√G+√G−1 )
2

, G≥1

Xoutput

X input

=√G

K=Diag [√G+√G−1 ,√G−√G−1]
α=0

K=√G I 2
α=|1−G| I 2/2

Unitary equivalent to a pure lossy channel
⇒　 Not EB!

η2=1

η1=1

A middle unitary operation renders the channel entanglement breaking!

Examples: Quantum limited amplifiers

S

S
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● Squeezer (Phase sensitive amplifier:PSA)

EB if the gain fulfils

● Quantum-limited phase insensitive amplifier (PIA)

S

Δ p2

Δ x2
=(√G−√G−1

√G+√G−1 )
2

, G≥1

Xoutput

X input

=√G

K=Diag [√G+√G−1 ,√G−√G−1]
α=0

K=√G I 2
α=|1−G| I 2/2

(K ,α )

Examples: Quantum limited amplifiers
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● Squeezer (Phase sensitive amplifier:PSA)

EB if the gain fulfils

● Quantum-limited phase insensitive amplifier (PIA)
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S

Δ p2
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● Squeezer (Phase sensitive amplifier:PSA)

EB if the gain fulfils

● Quantum-limited phase insensitive amplifier (PIA)

EB if the gain fulfils

S

Δ p2

Δ x2
=(√G−√G−1

√G+√G−1 )
2

, G≥1

Xoutput

X input

=√G

K=Diag [√G+√G−1 ,√G−√G−1]
α=0

K=√G I 2
α=|1−G| I 2/2

(K ,α )

For a long distance 

– a small gain  amplification renders the channel entanglement breaking! 

Examples: Quantum limited amplifiers

η1 ,η2≪1 → G>1~



37

Conclusion
● Useful black boxes do exist!

       Break the linear scaling R ~ η 

● No-go result for Gaussian center stations

General multi-mode Gaussian channels

      

● Conditions that a single-mode Gaussian station make whole 
channel entanglement breaking (EB)

Special cases: quantum limited amplifier

– A small amplification could make the channel entanglement breaking 
Better off using amplifiers as repeater stations

Chain of lossy channels and black boxes

???

S
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Construction

γ ' :=
α t−η1η2α
1−η1η2

, M T γ 'M≥
1
2
I2n

Sketch of Proof

 I. The total channel action

II. Existence of a noise term and a unitary matrix 

III. Choose a gain term 

(K ,α )

(K t ,α t)

M(
~K ,~α )

~K=
1

√η1η2 K M

~α := 1
η1η2 (M

Tαt M−
1−η1η2
2

I 2n)


