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An efficient implementation of many multiparty protocols for quantum networks requires that
all the nodes in the network share a common reference frame. To establish such a reference frame
from scratch is especially challenging in an asynchronous network where network links might have
arbitrary delays and the nodes do not share synchronised clocks. In this work, we study the problem
of establishing a common reference frame in an asynchronous network of n nodes of which at most t
are affected by arbitrary unknown error, and the identities of the faulty nodes are not known. We
present a protocol that allows all the correctly functioning nodes to agree on a common reference
frame as long as the network graph is complete and not more than t < n/4 nodes are faulty. As the
protocol is asynchronous, it can be used to synchronise clocks over a network. Also, the protocol
has the appealing property that it allows any existing two-node protocol for asynchronous reference
frame agreement to be lifted to a robust protocol for a quantum network.

PACS numbers:

I. INTRODUCTION

To use quantum cryptography on a global scale one
must first have a functioning quantum internet [1]. Re-
cently this necessity has inspired a lot of effort in the
research and development of satellite [2–6], and ground
based [7–9] quantum networks. The possible applications
of such networks are not restricted to only cryptography.
A fully general quantum network will allow us to perform
general distributed quantum computing [10–12].

In this work, we study problems related to initialisation
and construction of quantum networks. More specifically
we study how well n nodes in an asynchronous quantum
network can agree on a reference frame in the presence
of at most t arbitrarily faulty nodes among them. By
asynchronous network we mean in this setting we do not
require the nodes to share a clock to begin with, and the
channel delays can be arbitrarily in each use. In fact,
an asynchronous protocol only assumes any message sent
from a correct node to a correct node will eventually
reach the destination, without imposing any bound on
the channel delay. This assumption captures the most
general reference frame agreement problem in a quantum
network because during the initialisation of the network
the pairwise channel delays might be unknown, clocks
might not be synchronised and spatial reference frames
might be unaligned.

In a quantum channel the qubits are encoded in some
physical degree of freedom. For example, polarisation
direction of photon is often used to encode qubits. Which
requires the sender and receiver to agree on some set of
orthonormal directions as their common spatial reference
frame. Another example is the time-bin qubits were both
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of the parties requires synchronised clocks. That is they
must have a pre-agreed temporal reference frame. So far
these reference frame agreement problems are studied in a
bipartite setting [13–19] with the exception of [20] where
spatial direction are agreed on in a synchronised network
of n nodes. Specially in [20] it is assumed that the network
is synchronous that is all the nodes of the network have
a shared clock and all the link delays have known upper
bound. The bipartite reference frame agreement problem
have been studied extensively. For example, many of the
known results are discussed in the review article [21]. But
agreeing on a reference frame in an asynchronous network
of n nodes remained open.

One advantage of having asynchronous reference frame
agreement protocol for a network with certain number
of faulty nodes is that once a spatial reference frame is
established, then new robust protocols can potentially be
built on top of it to perform network-wide clock synchro-
nisation. This is a task important by itself with various
application in security, navigation and finance etc. [22].
The primary difficulty of executing any protocol in an
asynchronous network comes from the fact that in pres-
ence of incorrect, that is, arbitrarily faulty nodes it is
impossible to decide for an correct receiver whether a
message is not arriving because the sender is faulty and
not sending anything at all, or if the sender is correct
but the channel is taking a very long time to transfer the
message. It is nontrivial to decide how long to wait for a
message before moving on to the next step of a protocol.

Another difficulty is that unlike in classical information
theory where information can be represented in bits, a
reference frame can only be transferred from scratch by
exchanging systems which have an inherent sense of di-
rection. Examples of such systems are spin qubits and
photon polarisation qubits. The receiver can only extract
direction information from these systems by performing
tomography on them. While preparing the direction any
node Pi will know the description of the direction as a
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vector vi in its local frame. Once the quantum system
carrying that direction arrives to a receiver Pj , the re-
ceiver constructs a representation of the direction in it’s
own local frame as vj . This inevitably introduces some
error even in correct transmissions. That is, depending
on the precision of the instruments one can only expect
to have d(vi, vj) ≤ δ for some δ > 0. But this distance
metric does not make sense as it is, because vi and vj are
vector representations in two different local frames. So we
must redefine our distance metric d(., .) where distance
is computed by converting both vectors in the frame of
the first argument. As a result d(vi, vj) remains a valid
distance measure even though Pi and Pj do not know
each other’s local frame. This computation of distance
between two vectors of different reference frames is only
done in the analysis of the protocol and not by the nodes
while playing the protocol. Any distance computed by a
node inside a protocol is only between vectors for which it
has a representation in its local frame. The inherent im-
perfection of message transmission must be accounted for
by any reference frame agreement protocol. We capture
this in the definition as,

Definition 1. For η > 0, a protocol in an asynchronous
network of n nodes is a η-asynchronous reference frame
agreement protocol if it satisfies the following conditions.

Termination. Every correct node Pi eventually termi-
nates and outputs a direction vi.

Correctness. If correct node Pi outputs vi and correct
node Pj outputs vj then d(vi, vj) ≤ η.

But we have to achieve these termination and correct-
ness condition in the presence of incorrect or faulty nodes.
As it is unknown which nodes are faulty this resembles
the Byzantine fault tolerance model [23] studied in from
classical distributed computing. For quantum networks
our assumptions are,

• The pairwise channels are public. That is, the mes-
sages are not secret. As a result an adversary can
see the content of a message between two correct
nodes and adapt its strategy accordingly.

• The pairwise channels are authenticated. That is,
if a correct node sends a message to another correct
node the message cannot be altered by the adversary.
But there can be channel noise and message might
be slightly changed within a bound.

• The pairwise channel delays might be controlled by
and faulty nodes. Not only the faulty nodes can see
the content of each pairwise channel in the network
they can control the channel delays, even between
the correct nodes.

• If an honest node sends a message to another honest
node the message eventually reaches the receiver.
That is, even though the delay is controlled by the
some adversary they cannot put infinite delay on a
message between two correct nodes. But the delay
is unbounded.

• The dishonest nodes might have correlated error,
or might cooperate with each other to thwart the
protocol. To create protocol which tolerates the
worst kind of faults we also assume that the faulty
nodes can cooperate with each other and have a
global strategy to fault the protocol. This is a
realistic assumption because some nodes might get
controlled by an adversary.

II. RESULTS

In this work we design a protocol that can take any two
party reference frame agreement protocol and lift it up
to a fault tolerant multiparty reference frame agreement
protocol. More specifically, we design the first protocol
A-Agree which allows n nodes in fully connected asyn-
chronous network to agree on a reference frame in the
presence of t < n/4 faulty nodes. The result can be
summarised in the following theorem.

Theorem 1. In a complete network of n nodes that are
pairwise connected by public quantum channels, if a bi-
partite δ-estimate direction protocol that uses m qubits to

achieve success probability qsucc ≥ 1 − e−Ω(mδ2) is used,
then protocol A-Agree is a 34δ-asynchronous reference
frame agreement protocol with success probability at least

1 − e−Ω(mδ2−logn), that can tolerate up to t < n/4 faulty
nodes.

The problem of both synchronous an asynchronous
agreement on classical bits in the presence of arbitrary
faulty node is extensively studied in classical literature
as Byzantine agreement problem [23]. But we should
emphasise that, any classical protocol cannot be used
in our problem because firstly, unlike classical network,
any communication of direction among correct nodes in
a quantum network will have inherent noises. As a result
any classical protocol would see all the correct nodes as
faulty nodes. And the protocol will fail. Secondly, one
cannot use the classical protocol directly because one
cannot represent a reference frame in classical bits [24].
But classical literature can still inform us on important
questions like, how to achieve constant expected time, how
to handle asynchronicity, etc. Some of the approaches
of our protocol regarding these questions are influenced
by [25]. We also use the interactive consistency protocol
by Ben-Or et. [26] as a subroutine.

We design our protocol in two steps. First, we design
a protocol AR-Cast for asynchronous broadcast, which
we later use as a subroutine in our final asynchronous
agreement protocol A-Agree.

A. Asynchronous broadcast

As the name suggests using this protocol a sender node
can send some message to all the other nodes in an asyn-
chronous network. At first sight a naive protocol of just
sending the message to all other nodes one by one seems
to be a valid protocol. But this naive protocol do not
work if the sender intentionally sends different message
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to different nodes, which can easily happen in networks
with faulty nodes. To guard from it all the other nodes
must communicate between each other to make sure they
are receiving the same message, or a close approximation
to it. But, as we have at most t faulty nodes, this verifica-
tion also becomes tricky. The whole thing becomes more
challenging because the network is not synchronous. As
a result a receiver who is waiting for a message, cannot
be certain whether to keep waiting (because the message
might be taking a long time in the channel) or move
on (because the sending node might be faulty and not
sending the message at all). Our protocol takes care of
all these challenges.

Formally the protocol is defined as,

Definition 2. For η > 0, ζ > 0, a protocol which is
initiated by a sender node Ps, in an asynchronous network
of n nodes, is called a (η, ζ)-asynchronous reference frame
broadcast protocol if it satisfies the following conditions.

Termination.

1. If the sender is correct then every correct node
eventually completes the protocol.

2. If any correct node completes the protocol,
then all the correct nodes eventually complete
the protocol.

Consistency. If one correct node Pk outputs a direction
vk then all pairs of correct nodes Pi and Pj even-
tually output directions vi, vj where d(vi, vj) ≤ η.

Correctness. If Ps is correct and broadcasts a direc-
tion u and if a correct node Pi outputs vi then
d(u, vi) ≤ ζ.

We emphasize that the Termination condition of asyn-
chronous reference frame broadcast is much weaker than
the Termination condition of asynchronous reference
frame agreement because in the broadcast protocol we
do not require that the correct nodes complete the proto-
col if the sender is faulty.

We achieve this by our protocol AR-Cast. The following
theorem summarises its properties.

Theorem 2. In a complete network of n nodes that are
pairwise connected by public quantum channels, if a bipar-
tite δ-estimate direction protocol is used that succeeds with

probability qsucc ≥ (1− e−Ω(nδ2)) then protocol AR-Cast is
a 42δ-asynchronous reference frame agreement protocol,

with success probability at least 1−e−Ω(mδ2−logn) that can
tolerate up to t < n/4 faulty nodes.

The protocol AR-Cast works roughly as follows. It has
several epochs. Which can be thought of as different
state of the node running the protocol. In Epoch 0 the
sender sends its intended direction to all as a [init] type
message. In Epoch 1 all the nodes waits until they receive
an [init] from sender or sufficient number of confirmation
from other nodes that they have received some directions
and proceeding to next epoch. This way, even if some

correct node never receives an [init] message if the other
correct nodes are advancing through the protocol this
node in Epoch 1 will not stay behind waiting. In Epoch
2 the correct nodes who have decides upon a direction
notifies the other nodes about its decision by sending
ready1 or ready2 type messages to all. All these previous
epochs make sure that all the correct nodes eventually
arrives in Epoch 3 and outputs a direction which satisfies
theorem 2. The protocol, and its analysis can be found
in the supplemental material.

B. Asynchronous agreement

Our main protocol A-Agree uses AR-Cast as a subroutine
and allows the correct nodes in an asynchronous network
to agree on a reference frame.

This protocol also have several epochs (or states). In
Epoch 0 of protocol A-Agree all the nodes proposes a
direction which represents their local frame. They broad-
cast this direction using AR-Cast. All the correct nodes
waits for at least (3t+ 1) such broadcasts to be complete.
Then they enter Epoch 1. Since, there are (3t+ 1) correct
nodes they will eventually arrive at Epoch 1. In this
step all the correct nodes creates a bit string of length n
where j’th bit represents if the j’th AR-Cast have been
completed successfully in Epoch 0. Then all the nodes
sends this bit string to all by playing Asynchronous-IC.
The Asynchronous-IC is a classical protocol given by Ben-
Or and El-Yaniv in [26]. After this they enters Epoch 2.
In this Epoch every node has the same set of bit strings.
They now look for the lowest inter k such that at least
(t+ 1) bit strings has a 1 in that position. If they have
completed that k’th AR-Cast they output their direction
received from that broad cast. If they k’th AR-Cast is not
complete for him they wait until it completes and then
output. The election of k ensures that at least one correct
node have completed the k’th AR-Cast so by Consistency
of asynchronous reference frame broadcast all the honest
nodes will eventually complete the k’th AR-Cast. This
ensure that the A-Agree eventually completes. As, there
is no loop in this protocol and all the subroutines run
in constant expected time [28]. The A-Agree is also a
constant expected time protocol.

III. CONCLUSION

In this work we have presented the first asynchronous
reference frame agreement protocol. The synchronous
protocol for spatial reference frame agreement presented
in [20] can tolerate up to t < n/3 faulty nodes. Whereas,
the asynchronous protocol we have presented tolerates
only t < n/4 faulty nodes. Even though we pay this extra
price in fault tolerance, an asynchronous protocol is a
fully general reference frame agreement protocol. Because
it can be used to synchronised clocks [27], which is an
important problem in its own right. There are classi-
cal protocols for asynchronous agreement on bits which
achieve t < n/3 in constant expected time, it remains
open to see if this bound can be achieved by reference
frame agreement protocols for a quantum network.
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An efficient implementation of many multiparty protocols for quantum networks requires that
all the nodes in the network share a common reference frame. To establish such a reference frame
from scratch is especially challenging in an asynchronous network where network links might have
arbitrary delays and the nodes do not share synchronised clocks. In this work, we study the problem
of establishing a common reference frame in an asynchronous network of n nodes of which at most t
are affected by arbitrary unknown error, and the identities of the faulty nodes are not known. We
present a protocol that allows all the correctly functioning nodes to agree on a common reference
frame as long as the network graph is complete and not more than t < n/4 nodes are faulty. As the
protocol is asynchronous, it can be used to synchronise clocks over a network. Also, the protocol
has the appealing property that it allows any existing two-node protocol for asynchronous reference
frame agreement to be lifted to a robust protocol for a quantum network.

PACS numbers:

I. INTRODUCTION

To use quantum cryptography on a global scale one
must first have a functioning quantum internet [1]. Re-
cently this necessity has inspired a lot of effort in the
research and development of satellite [2–6], and ground
based [7–9] quantum networks. The possible applications
of such networks are not restricted to only cryptography.
A fully general quantum network will allow us to perform
general distributed quantum computing [10–12].

In this work, we study problems related to initialisation
and construction of quantum networks. More specifically
we study how well n nodes in an asynchronous quantum
network can agree on a reference frame in the presence
of at most t arbitrarily faulty nodes among them. By
asynchronous network we mean in this setting we do not
require the nodes to share a clock to begin with, and the
channel delays can be arbitrarily in each use. In fact,
an asynchronous protocol only assumes any message sent
from a correct node to a correct node will eventually
reach the destination, without imposing any bound on
the channel delay. This assumption captures the most
general reference frame agreement problem in a quantum
network because during the initialisation of the network
the pairwise channel delays might be unknown, clocks
might not be synchronised and spatial reference frames
might be unaligned.

In a quantum channel the qubits are encoded in some
physical degree of freedom. For example, polarisation
direction of photon is often used to encode qubits. Which
requires the sender and receiver to agree on some set of
orthonormal directions as their common spatial reference
frame. Another example is the time-bin qubits were both
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of the parties requires synchronised clocks. That is they
must have a pre-agreed temporal reference frame. So far
these reference frame agreement problems are studied in a
bipartite setting [13–19] with the exception of [20] where
spatial direction are agreed on in a synchronised network
of n nodes. Specially in [20] it is assumed that the network
is synchronous that is all the nodes of the network have
a shared clock and all the link delays have known upper
bound. The bipartite reference frame agreement problem
have been studied extensively. For example, many of the
known results are discussed in the review article [21]. But
agreeing on a reference frame in an asynchronous network
of n nodes remained open.

One advantage of having asynchronous reference frame
agreement protocol for a network with certain number
of faulty nodes is that once a spatial reference frame is
established, then new robust protocols can potentially be
built on top of it to perform network-wide clock synchro-
nisation. This is a task important by itself with various
application in security, navigation and finance etc. [22].
The primary difficulty of executing any protocol in an
asynchronous network comes from the fact that in pres-
ence of incorrect, that is, arbitrarily faulty nodes it is
impossible to decide for an correct receiver whether a
message is not arriving because the sender is faulty and
not sending anything at all, or if the sender is correct
but the channel is taking a very long time to transfer the
message. It is nontrivial to decide how long to wait for a
message before moving on to the next step of a protocol.

Another difficulty is that unlike in classical information
theory where information can be represented in bits, a
reference frame can only be transferred from scratch by
exchanging systems which have an inherent sense of di-
rection. Examples of such systems are spin qubits and
photon polarisation qubits. The receiver can only extract
direction information from these systems by performing
tomography on them. While preparing the direction any
node Pi will know the description of the direction as a
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vector vi in its local frame. Once the quantum system
carrying that direction arrives to a receiver Pj , the re-
ceiver constructs a representation of the direction in it’s
own local frame as vj . This inevitably introduces some
error even in correct transmissions. That is, depending
on the precision of the instruments one can only expect
to have d(vi, vj) ≤ δ for some δ > 0. But this distance
metric does not make sense as it is, because vi and vj are
vector representations in two different local frames. So we
must redefine our distance metric d(., .) where distance
is computed by converting both vectors in the frame of
the first argument. As a result d(vi, vj) remains a valid
distance measure even though Pi and Pj do not know
each other’s local frame. This computation of distance
between two vectors of different reference frames is only
done in the analysis of the protocol and not by the nodes
while playing the protocol. Any distance computed by a
node inside a protocol is only between vectors for which it
has a representation in its local frame. The inherent im-
perfection of message transmission must be accounted for
by any reference frame agreement protocol. We capture
this in the definition as,

Definition 1. For η > 0, a protocol in an asynchronous
network of n nodes is a η-asynchronous reference frame
agreement protocol if it satisfies the following conditions.

Termination. Every correct node Pi eventually termi-
nates and outputs a direction vi.

Correctness. If correct node Pi outputs vi and correct
node Pj outputs vj then d(vi, vj) ≤ η.

But we have to achieve these termination and correct-
ness condition in the presence of incorrect or faulty nodes.
As it is unknown which nodes are faulty this resembles
the Byzantine fault tolerance model [23] studied in from
classical distributed computing. For quantum networks
our assumptions are,

• The pairwise channels are public. That is, the mes-
sages are not secret. As a result an adversary can
see the content of a message between two correct
nodes and adapt its strategy accordingly.

• The pairwise channels are authenticated. That is,
if a correct node sends a message to another correct
node the message cannot be altered by the adversary.
But there can be channel noise and message might
be slightly changed within a bound.

• The pairwise channel delays might be controlled by
and faulty nodes. Not only the faulty nodes can see
the content of each pairwise channel in the network
they can control the channel delays, even between
the correct nodes.

• If an honest node sends a message to another honest
node the message eventually reaches the receiver.
That is, even though the delay is controlled by the
some adversary they cannot put infinite delay on a
message between two correct nodes. But the delay
is unbounded.

• The dishonest nodes might have correlated error,
or might cooperate with each other to thwart the
protocol. To create protocol which tolerates the
worst kind of faults we also assume that the faulty
nodes can cooperate with each other and have a
global strategy to fault the protocol. This is a
realistic assumption because some nodes might get
controlled by an adversary.

II. PRELIMINARIES

The problem of reference frame agreement over an asyn-
chronous quantum network is necessarily multidisciplinary
in nature. That is, it combines various concepts from
quantum physics, information theory, cryptography and
distributed computing. In this section we introduce sev-
eral concepts from these fields that will be useful through-
out this work.

A. Reference frame

1. Spatial reference frame

Spatial reference frame defines a co-ordinate system
in space. For example in a Cartesian coordinate system,
once the Cartesian frame (~x, ~y, ~z) is specified any vector
v = α~x + β~y + γ~z can be represented as (α, β, γ) where
α, β and γ are scalers. For two distant parties, who only
have the knowledge of their own local frame, it becomes
necessary to establish a shared reference frame before
they can successfully communicate spatial information
(like, location, orientation,... etc).

We only use quantum communications to send a di-
rection between a sender and a receiver. As an example
we use protocol 2ED, one of the simplest possible pro-
tocols as studied in [13]. Here a sender creates many
identical qubits with their Bloch vector pointing to the
intended direction and the receiver measures them with
Pauli measurements. From the statistics of the measure-
ment outcomes, the receiver then estimates the Bloch
vector’s direction closely with high success probability.

2. Temporal reference frame

Similar to spatial reference frames multiple parties
might need to synchronise their clock rates and time dif-
ferences. Once they have established it, we say that they
share a temporal reference frame and they are synchro-
nised in time. Any multiparty protocol or computation
performed by systems that do not share a temporal refer-
ence frame are respectively called asynchronous protocol
or asynchronous computation.
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Protocol 1: 2ED
input : Sender, direction u
output : Receiver, direction v

1 Sender: 2ED-Send
2 Prepare 3n qubits with direction u
3 Send them to the receiver

4 Receiver: 2ED-Receive
5 Receive 3n qubits from the sender
6 Measure n qubits with σx and compute px, the

frequency of getting outcome +1
7 Similarly on the remaining qubits, compute py and pz

with measurements σy and σz on n qubits each
8 Assign x← 2px − 1, y ← 2py − 1, z ← 2pz − 1;

Assign l←
√
x2 + y2 + z2

9 Output v ← (x/l, y/l, z/l)

B. Asynchronous communication

In an asynchronous network we assume the nodes do not
share any synchronized clock. Also, the communication
channel between each pair is such that a message takes
arbitrary amount of time to propagate through it. The
only promise is, if a message is transmitted from a correct
node the message will eventually reach to the receiver.

1. The asynchronous message

In the absence of a synchronized clock, each message
must have a ‘begin’ and ‘end’ tag. Also, depending on
the particular application, a message might carry a [type]
information. In our problem we don’t have a shared
reference frame. As a result, we cannot use the quantum
channel to carry these [type] information. This requires
us to have a parallel classical channel that uses some
classical degree of freedom to carry bits.

Let’s assume Alice and Bob are connected by an asyn-
chronous classical channel with maximum delay dc and
a asynchronous quantum channel with maximum delay
dq. Using these two separate channels we want to create
an asynchronous CQ-channel (classical quantum channel)
that can send a message with both classical and quantum
component in the absence of a shared reference frame. An
example of such combined message is shown in Table I
where each quantum message mq is sandwiched between
a classical ’begin’ and ’end’ tag and also accompanied by
a classical type tag mc. The symbol ⊥ denotes quantum
signals that can be ignored.

TABLE I: Channel primitive: A message

Step Classical Quantum

1 begin ⊥
2 mc mq

3 end ⊥

Messages might come out of a channel in a different
order than the were put in initially. But we assume
inside one atomic message the order of each of the 3 steps
remains unchanged.

2. Time complexity of asynchronous protocols

Note that in an asynchronous network a message can
take arbitrary amount of time to travel from sender to
receiver. Also in asynchronous protocol, the nodes might
take arbitrary amount of time to take next step in a
protocol. So, to compute the time complexity of an
asynchronous protocol it is a standard practice to only
count the number of steps executed by any node. Each
of these steps might take an arbitrary amount of time.

3. Asynchronous interactive consistency

Our protocol uses the solution to the following inter-
active consistency problem which was first proposed by
Pease, Shostak and Lamport [24].

Definition 2 (The Interactive Consistency Problem).
Consider a complete network of n nodes in which com-
munication lines are private. Among the n nodes up to
t might be faulty. Let P1, P2, . . . , Pn denote the nodes.
Suppose that each node Pi has some private value of
information Vi ∈ |V | ≥ 2. The question is whether it
is possible to device a protocol that, given n, t ≥ 0, will
allow each correct nodes to compute a vector of values
with an element for each of the n processors, such that:

1. All the correct nodes compute exactly the same
vector;

2. The element of this vector corresponding to a given
correct node is the private value of that node.

For an asynchronous network, Ben-Or and El-Yaniv [25]
gives a protocol Asynchronous-IC which solves this problem
for t < n/3 in constant expected time. We use this
protocol as a subroutine.

III. RESULTS

In this paper we give a protocol that can take any two
party reference frame agreement protocol and lift it up
to a fault tolerant multiparty reference frame agreement
protocol. More specifically, we present the first protocol
A-Agree which allows n nodes in fully connected asyn-
chronous network to agree on a reference frame in the
presence of t < n/4 faulty nodes. The result can be
summarised in the following theorem.

Theorem 1. In a complete network of n nodes that are
pairwise connected by public quantum channels, if a bi-
partite δ-estimate direction protocol that uses m qubits to
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achieve success probability qsucc ≥ 1 − e−Ω(mδ2) is used,
then protocol A-Agree is a 34δ-asynchronous reference
frame agreement protocol with success probability at least

1− e−Ω(mδ2−logn), that can tolerate up to t < n/4 faulty
nodes.

The problem of both synchronous an asynchronous
agreement on classical bits in the presence of arbitrary
faulty node is extensively studied in classical literature
as Byzantine agreement problem [23]. But we should
emphasise that, any classical protocol cannot be used
in our problem because firstly, unlike classical network,
any communication of direction among correct nodes in
a quantum network will have inherent noises. As a result
any classical protocol would see all the correct nodes as
faulty nodes. And the protocol will fail. Secondly, one
cannot use the classical protocol directly because one
cannot represent a reference frame in classical bits [26].
But classical literature can still inform us on important
questions like, how to achieve constant expected time, how
to handle asynchronicity, etc. Some of the approaches
of our protocol regarding these questions are influenced
[27]. We also use the interactive consistency protocol by
Ben-Or et. [25] as a subroutine.

To give the protocols we first need to define some nota-
tions.
wi[j] represents a vector received by node Pi from node

Pj . Which is represented with respects to Pi’s local
reference frame.

In our protocol any message between two nodes that
carries a direction also base a [type] tag. We call the
direction vector is of type [type].

Next we fix a notation for a cluster of vectors of certain
types where the cluster has a certain cluster centre and a
cluster parameter. We write it as Cδi ([types], wc). This
means the cluster with cluster centre wcis computed and
stored in node Pi, has a cluster parameter δ and contains
only the types of vector stated in the [types]. Here [types]
is a comma separated list of [type]s. The cluster parameter
δ denotes that for all u, v ∈ Cδi ([types], wc) their distance
d(u, v) ≤ δ.

For example, Cδi ([ready1,ready2], vc) denotes a cluster
with any of ready1 or ready2 type directions with clus-
ter center vc such that ∀u, v ∈ Cδi ([ready1,ready2], vc),
d(u, v) ≤ δ.
P (Cδi ([type], wc)) is the set of all the nodes Pj such

that, wi[j] ∈ Cδi ([type], wc).
Now we give our protocol in two steps. First, we give a

protocol for asynchronous broadcast, which we later use
as a subroutine in our asynchronous agreement protocol.

A. Asynchronous broadcast

As the name suggests using this protocol a sender node
can send some message to all the other nodes in an asyn-
chronous network. At first sight a naive protocol of just
sending the message to all other nodes one by one seems

to be a valid protocol. But this naive protocol do not
work if the sender intentionally sends different message
to different nodes, which can easily happen in networks
with faulty nodes. To guard from it all the other nodes
must communicate between each other to make sure they
are receiving the same message, or a close approximation
to it. But, as we have at most t faulty nodes, this verifica-
tion also becomes tricky. The whole thing becomes more
challenging because the network is not synchronous. As
a result a receiver who is waiting for a message, cannot
be certain whether to keep waiting (because the message
might be taking a long time in the channel) or move
on (the sending node might be faulty and not sending
the message at all). Our protocol takes care of all these
challenges.

Formally the protocol is defined as,

Definition 3. For η > 0, ζ > 0, a protocol which is
initiated by a sender node Ps, in an asynchronous network
of n nodes, is called a (η, ζ)-asynchronous reference frame
broadcast protocol if it satisfies the following conditions.

Termination.

1. If the sender is correct then every correct node
eventually completes the protocol.

2. If any correct node completes the protocol,
then all the correct nodes eventually complete
the protocol.

Consistency. If one correct node Pk outputs a direction
vk then all pairs of correct nodes Pi and Pj eventu-
ally output directions vi, vj where d(vi, vj) ≤ η.

Correctness. If Ps is correct and broadcasts a direc-
tion u and if a correct node Pi outputs vi then
d(u, vi) ≤ ζ.

We emphasize that the Termination condition of asyn-
chronous reference frame broadcast is much weaker than
the Termination condition of asynchronous reference
frame agreement because in the broadcast protocol we
do not require that the correct nodes complete the proto-
col if the sender is faulty.

We achieve this by our protocol AR-Cast. The following
theorem summarises its properties.

Theorem 2. In a complete network of n nodes that are
pairwise connected by public quantum channels, if a bipar-
tite δ-estimate direction protocol is used that succeeds with

probability qsucc ≥ (1− e−Ω(nδ2)) then protocol AR-Cast is
a 42δ-asynchronous reference frame agreement protocol,

with success probability at least 1−e−Ω(mδ2−logn) that can
tolerate up to t < n/4 faulty nodes.

The protocol 2 AR-Cast works roughly as follows. In
Epoch 0 the sender sends its intended direction to all as a
[init] type message. In Epoch 1 all the nodes waits until
they receive an [init] from sender or sufficient number of
confirmation from other nodes that they have received
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Protocol 2: AR-Cast
input : Sender inputs direction u
output : ∀i Pi outputs direction vi

1 Epoch 0: (Only Sender)
2 Send-to-all (init, u).

1 Epoch 1: (Player Pi)
2 Listen to init, echo, ready1 and ready2 type messages.
3 Wait until Either received one (init, ui) Then
4 Send-to-all (echo, ui).
5 Goto Epoch 2.

6 Or until received a cluster of directions

C4δ
i ([echo], wc) of size at least (n− 2t) And a cluster

of directions C10δ
i ([ready1,ready2], vc) of size at least

(t+ 1), so that, d(wc, vc) ≤ 10δ Then
7 Send-to-all (ready2, wc).
8 Goto Epoch 3.

1 Epoch 2: (Player Pi)
2 Listen to echo, ready1 and ready2 type messages.
3 Wait until Either there exists a cluster of directions

C4δ
i ([echo], wc) of size at least (n− t) Then

4 Send-to-all (ready1, wc).
5 Goto Epoch 3.

6 Or until there exists a cluster of directions

C4δ
i ([echo], wc) of size at least (n− 2t) And a cluster

of directions C10δ
i ([ready1,ready2], vc) of size at least

(t+ 1), so that, d(wc, vc) ≤ 10δ, Then
7 Send-to-all (ready2, wc).
8 Goto Epoch 3.

1 Epoch 3: (Player Pi)
2 Wait until there exists a cluster of directions

C20δ
i ([ready1,ready2], vc) of size at least (n− t) Then

3 Output vc.
4 Halt

some directions and proceeding to next epoch. This way,
even if some correct node never receives an [init] message
if the other correct nodes are advancing through the
protocol this node in Epoch 1 will not stay behind waiting.
In Epoch 2 the correct nodes who have decides upon a
direction notifies the other nodes about its decision by
sending ready1 or ready2 type messages to all. All these
previous epochs make sure that all the correct nodes
eventually arrives in Epoch 3 and outputs a direction
which satisfies theorem 2.

B. Asynchronous agreement

Now we give our main protocol A-Agree which uses AR-
Cast as a subroutine and allows the correct nodes in an
asynchronous network to agree on a reference frame.

In Epoch 0 of protocol 3 A-Agree all the nodes proposes
a direction which represents their local frame. They
broadcast this direction using AR-Cast. All the correct
nodes waits for at least (3t + 1) such broadcasts to be
complete. Then they enter Epoch 1. Since, there are

Protocol 3: A-Agree

input : ∀i, Pi inputs direction ui
output : ∀i, Pi outputs direction vi

1 Epoch 0: (Player Pi)
2 Create a direction array wi of size n.
3 ∀j, initialize wi[j]←⊥.
4 Run AR-Cast(ui).

// everyone broadcasts their local input

5 Store received direction from Pj in wi[j].
6 After receiving (3t+ 1) such directions Goto Epoch 1.

But still continue the incomplete AR-Casts in parallel.

1 Epoch 1: (Player Pi)
2 Create a bit string ai of size n.
3 for j ← 1 to n do
4 if wi[j] 6=⊥ then
5 Assign ai[j]← 1.

6 else
7 Assign ai[j]← 0.

// ai records which A-Casts are completed so far

by Pi
8 Run Asynchronous-IC(ai).
// This step reports to all which A-Casts are

successfully received by Pi
9 Store the output of Asynchronous-IC in vector bi such

that, element bi[j] is received from Pj .
// After this step every correct nodes know

which A-Casts are reported to be complete by

which node

10 Wait until Asynchronous-IC completes Then
11 Goto Epoch 2

1 Epoch 2: (Player Pi)
2 Let ki be the index of a column which has at least

(t+ 1) 1s in it. So that, for any other index l of
column with (t+1) 1s k < l. // After

completion of Asynchronous-IC each row of bi
is a bit string of length n. That is bi
is essentially an n× n bit matrix.

3 Wait until the A-Cast initiated by Pki completes
Then

4 Assign v ← wi[ki].
5 Abort all incomplete A-Casts that are running

since Epoch 0.
6 Output v.

(3t+ 1) correct nodes they will eventually arrive at Epoch
1. In this step all the correct nodes creates a bit string of
length n where j’th bit represents if the j’th AR-Cast have
been completed successfully in Epoch 0. Then all the
nodes sends this bit string to all by playing Asynchronous-
IC. After this they enters Epoch 2. In this Epoch every
node has the same set of bit strings. They now look for
the lowest inter k such that at least (t + 1) bit strings
has a 1 in that position. If they have completed that
k’th AR-Cast they output their direction received from
that broad cast. If they k’th AR-Cast is not complete
for him they wait until it completes and then output.
The election of k ensures that at least one correct node
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have completed the k’th AR-Cast so by Consistency of
asynchronous reference frame broadcast all the honest
nodes will eventually complete the k’th AR-Cast. This
ensure that the A-Agree eventually completes. As, there
is no loop in this protocol and all the subroutines run in
constant expected time. The A-Agree is also a constant
expected time protocol.

IV. CONCLUSION

In this work we have presented the first asynchronous
reference frame agreement protocol. The synchronous

protocol for spatial reference frame agreement presented
in [20] can tolerate up to t < n/3 faulty nodes. Whereas,
the asynchronous protocol we have presented tolerates
only t < n/4 faulty nodes. Even though we pay this extra
price in fault tolerance, an asynchronous protocol is a
fully general reference frame agreement protocol. Because
it can be used to synchronised clocks [28], which is an
important problem in its own right. There are classi-
cal protocols for asynchronous agreement on bits which
achieve t < n/3 in constant expected time, it remains
open to see if this bound can be achieved by reference
frame agreement protocols for a quantum network.
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V. APPENDIX

A. Asynchronous reference frame broadcast

To prove correctness of our AR-Cast we have to prove
theorem 2 as restated here.

Theorem 2. In a complete network of n nodes that are
pairwise connected by public quantum channels, if a bipar-
tite δ-estimate direction protocol is used that succeeds with

probability qsucc ≥ (1− e−Ω(nδ2)) then protocol AR-Cast is
a 42δ-asynchronous reference frame agreement protocol,

with success probability at least 1−e−Ω(mδ2−logn) that can
tolerate up to t < n/4 faulty nodes.

For this we observe several properties of Protocol 2 in
the following lemmas. The first observation is that if two
different correct nodes sends [ready1] type message then
the direction they send are close to each other with high
probability.

Lemma 1. For t < n/4, δ > 0, qsucc > 0, if two cor-
rect nodes Pi and Pj send ([ready1],u) and ([ready1],v)
respectively, then d(u, v) ≤ 10δ with probability at least

qn+n2

succ .

Proof. In step 4 of Epoch 2 when a [ready1] message is
generated there are at most n init messages originated
from the sender and at most n2 echo messages generated

by the other nodes. So, with probability at least qn+n2

succ

all the transmissions which are among correct nodes are
successful. Conditioning on this we prove,

d(u, v) ≤ 10δ. (1)

We show this in two steps. First, we show that there
exists a common correct node Pk in P (C4δ

i ([echo], u)) and
P (C4δ

j ([echo], v)). Then using the triangle inequality with
the fact that the echo vector from Pk must be close to both
of the cluster centers u and v, we derive inequality (1).

Now, for the first step, let us denote Ai and Aj to be
the set of nodes from which the vectors in (C4δ

i ([echo], u)
have originated. And Bi and Bj to be the correct nodes
in Ai and Aj respectively. Formally,

Ai = P (C4δ
i ([echo], u)), (2)

Aj = P (C4δ
j ([echo], v)), (3)

Bi = {Pl : Pl ∈ Ai and Pl is correct.}, (4)

Bj = {Pl : Pl ∈ Aj and Pl is correct.}. (5)

Note that at this step |Ai| ≥ n − t and |Aj | ≥ n − t.
We want to show that,

Bi ∩Bj 6= ∅. (6)

We do this by contradiction: let us assume that,

Bi ∩Bj = ∅. (7)

Note that,

|Ai| ≥ n− t (8)

⇒ |Ai −Bi|+ |Bi| ≥ n− t, (9)

⇒ t+ |Bi| ≥ n− t, (10)

⇒ |Bi| ≥ n− 2t, (11)

⇒ |Bi| > n− 2(n/4) = n/2. (12)

Here, inequality (10) holds because at most t of the
nodes are faulty. And inequality (12) holds because t <
n/4.

Now,

|Ai ∪Aj | = |(Ai −Bi) ∪ (Aj −Bj) ∪Bi ∪Bj | ,
≥ |(Aj −Bj)|+ |Bi|+ |Bj | , (13)

= |Aj |+ |Bi| , (14)

> (n− t) + n/2, (15)

> n− n/4 + n/2 = 5n/4 (16)

Here, inequality (14) uses inequality (7), inequality (15)
follows from the definition from the size of Aj and inequal-
ity (12). And inequality (16) follows because, t < n/4.
But this is a contradiction, because there are only n nodes
in the network. So, we must have,

Bi ∩Bj 6= ∅. (17)

So, there exists a common correct node Pk ∈ Bi ∩Bj in
P (C4δ

i ([echo], u)) and P (C4δ
j ([echo], v)). As Pk is correct,

it must have sent the same echo type message to both Pi
and Pj . So, using the triangle inequality we have,

d(wi[k], wj [k]) ≤ d(wi[k], uk) + d(uk, wj [k]), (18)

≤ δ + δ = 2δ. (19)

Now inequality (1) follows because,

d(u, v) ≤ d(u,wi[k]) + d(wi[k], wj [k]) + d(wj [k], v),
(20)

≤ 4δ + d(wi[k], wj [k]) + 4δ, (21)

≤ 4δ + 2δ + 4δ = 10δ. (22)

Here, inequality (21) follows from the definitions of
C4δ
i ([echo], u) and C4δ

j ([echo], v) and inequality (22) fol-
lows from inequality (19).

In lemma 1 we have shown the relation between two
[ready1] type directions from two different honest node.
Now we show that if a correct node sends a [ready1] and
another honest node sends a [ready2] type message then
the directions they send are close with high probability.

Lemma 2. For t < n/4, δ > 0, qsucc > 0, if two cor-
rect nodes Pi and Pj send ([ready1],u) and ([ready2],v)
accordingly, then d(u, v) ≤ 10δ with probability at least

qn+2n2

succ .
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Proof. When a [ready2] message is generated there are
at most n init, n2 echo and in total n2 [ready1] or
[ready2] messages generated in the protocol. With prob-

ability at least qn+2n2

succ all the transmissions which are
among correct nodes are successful. Conditioning on this,
we show that,

d(u, v) ≤ 10δ. (23)

We do this in two steps, first we show that there
is a common correct node Pk in P (C4δ

i ([echo], u)) and
P (C4δ

j ([echo], v)). Then using the triangle inequality with
the fact that both of the cluster centers u and v must
be close to the echo direction sent from Pk we prove the
inequality (23).

To see the first step, let us first define sets Ai, Aj , Bi
and Bj by,

Ai = P (C4δ
i ([echo], u)), (24)

Aj = P (C4δ
j ([echo], v)), (25)

Bi = {Pl : Pl ∈ Ai and Pl is correct.}, (26)

Bj = {Pl : Pl ∈ Aj and Pl is correct.}. (27)

Note that here |Ai| ≥ n− t and |Aj | ≥ n−2t. We want
to show that,

Bi ∩Bj 6= ∅. (28)

We do this by contradiction: let us assume that,

Bi ∩Bj = ∅. (29)

Note that,

|Ai| ≥ n− t (30)

⇒ |Ai −Bi|+ |Bi| ≥ n− t, (31)

⇒ t+ |Bi| ≥ n− t, (32)

⇒ |Bi| ≥ n− 2t, (33)

⇒ |Bi| > n− 2(n/4) = n/2. (34)

Here, inequality (32) holds because at most t of the
nodes are faulty. And inequality (34) holds because t <
n/4.

Now,

|Ai ∪Aj | = |(Ai −Bi) ∪ (Aj −Bj) ∪Bi ∪Bj | ,
≥ |(Aj −Bj)|+ |Bi|+ |Bj | , (35)

= |Aj |+ |Bi| , (36)

> (n− 2t) + n/2, (37)

> n− n/2 + n/2 = n (38)

Here, inequality (37) follows from the definition of Aj
and inequality (34). And inequality (38) follows because,
t < n/4. But this is a contradiction, because there are
only n nodes in the network. So, we must have,

Bi ∩Bj 6= ∅. (39)

So, there exists a common correct node Pk in
P (C4δ

i ([echo], u)) and P (C4δ
j ([echo], v)). As Pk is cor-

rect, it mast have sent the same echo type message to
both Pi and Pj . So, using the triangle inequality we have,

d(wi[k], wj [k]) ≤ d(wi[k], uk) + d(uk, wj [k]), (40)

≤ δ + δ = 2δ. (41)

Now inequality (1) follows because,

d(u, v) ≤ d(u,wi[k]) + d(wi[k], wj [k]) + d(wj [k], v),
(42)

≤ 4δ + d(wi[k], wj [k]) + 4δ, (43)

≤ 4δ + 2δ + 4δ = 10δ. (44)

Here, inequality (43) follows from the definitions of
C4δ
i ([echo], u) and C4δ

j ([echo], v) and inequality (44) fol-
lows from inequality (41).

Now we show that all the correct nodes cannot send
only [ready2] type messages. That is if there exists a
[ready2] message sent from a correct node then there must
pre-exist a [ready1] message sent from another correct
node.

Lemma 3. For t < n/4, δ > 0, qsucc > 0, if a correct
node Pj sends ([ready2],v) then,with probability at least

qn+2n2

succ , there exists a correct node Pi which has sent
([ready1],u) .

Proof. When a [ready2] message is generated there are
at most n init, n2 echo and in total n2 [ready1] or
[ready2] messages generated in the protocol. With

probability at least qn+2n2

succ all the transmissions which
are among correct nodes are successful. In this
case, just before making the decision to send a
([ready2],v) message node Pj must have received at
least (t+1) [ready1] or [ready2] messages from nodes
in P (C10δ

i ([ready1,ready2]vc)). Of these, at least one
node—let’s call it Pk—is correct. If Pk has also sent a
[ready2] type message, we can find another correct node
in its P (C10δ

k ([ready1,ready2]vc)) and so on. This way,
eventually we will find a correct node who have sent a
[ready1] type message.

To see this, let us define a directed graph G(V,E) with
vertex set V = {Pi : Pi is correct}, and

E = {(Pk, Pi) : Pk has sent ready2

after receiving ready1 or ready2 from Pi}. (45)

One can convince oneself that G is a directed acyclic
graph because any cycle in the graph would violate the
cause and effect relation of the edge directions. Now
if we look at the connected component of this graph
containing Pj there must exist a node Pi in this component
with no outgoing edges. Because V only contains correct
nodes. This implies Pi is a correct node which has sent
a [ready1] type message ([ready1],u). This completes the
proof.
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Now the only thing remains is to show that two
[ready2] type directions sent from two correct nodes are
close with high probability.

Lemma 4. For t < n/4, δ > 0, qsucc > 0, if two nodes
Pi and Pj sends ([ready2],u) and ([ready2],v) respectively,

then d(u, v) ≤ 20δ with probability at least qn+2n2

succ .

Proof. When a [ready2] message is generated there are
at most n init, n2 echo and in total n2 [ready1] or
[ready2] messages generated in the protocol. With proba-

bility at least qn+2n2

succ all of these transmissions which are
between honest players are successful. Conditioning on
this, we show that, if correct Pi sends ([ready2],u) then
from Lemma 3 there exists a correct node Pk which has
sent ([ready1],w). From Lemma 2,

d(u,w) ≤ 10δ, (46)

and

d(v, w) ≤ 10δ. (47)

Using the triangle inequality with these we get,

d(u, v) ≤ d(u,w) + d(w, v) ≤ 10δ + 10δ = 20δ. (48)

Now we are ready to prove that our protocol 2 satisfies
the first termination condition of definition 3.

Lemma 5 (Termination 1). For t < n/4, δ > 0, qsucc > 0,
if the sender Pk is honest then the protocol 2 AR-Cast

eventually terminates with probability at least qn+n2

succ .

Proof. There are at most n init messages, n2 echo mes-
sages and n2 [ready1] or [ready2] type messages exchanged

in the protocol. With probability at least qn+2n2

succ all of
these transmissions which are between honest players are
successful. In this case, if the sender is correct all the
correct nodes eventually receive init messages that are
at most 2δ apart from each other and send echo mes-
sage. So, all the received echo messages are at most
3δ apart from the received init direction of any correct
node. Any node that has sent a [ready1] type message
will go to epoch 3. The faulty nodes cannot stop the init
and echo messages from correct nodes but they can ma-
nipulate the delayes, so that some of the honest players
send d [ready2] type messages. Still after sending the
[ready2] these honest players will finally arrive at Epoch
3. From lemma 1 and lemma 2 we can see that for any
correct Pi all the received [ready1] and [ready2] directions
will be in C16δ

i ([ready1,ready2], vc). And because there
are (n− t) of them originating from the correct nodes the
protocol 2 AR-Cast will eventually terminate. Note that,
if the sender is faulty, the definition of (η, ζ)-reference
frame broadcast protocol (Derinition 3)do not require any
termination.

Now we show that if one correct node outputs a direc-
tion, then all the correct nodes eventually output direc-
tions that are close to each other.

Lemma 6 (Consistency). For t < n/4, δ > 0, qsucc > 0,
in protocol A-cast, if an honest player Pk outputs vk then
all pair of correct nodes Pi, Pj eventually output vi, vj
respectively such that, d(vi, vj) ≤ 42δ with probability at

least qn+n2

succ .

Proof. When a [ready2] message is generated there are
at most n init, n2 echo and in total n2 [ready1] or
[ready2] messages generated in the protocol. With proba-

bility at least qn+2n2

succ all of these transmissions which are
between honest players are successful. In this case, we
prove,

d(vi, vj) ≤ 42δ, (49)

by showing that the successful completion of Pk implies
there are enough echo, [ready1] and [ready2] type messages
generated by correct nodes so that all the other correct
nodes eventually receive them and successfully terminate
and each pair of their outputs satisfies inequality (49).

Now, if a correct node Pk outputs vk then this implies it
has received at least (n− t) [ready1] or [ready2] messages
from nodes in P (C20δ

k ([ready1,ready2], vk)), of which at
least (n − 2t) are correct. Messages from these correct
nodes eventually reach all the other correct nodes. Also,
from lemma 3 there exists a correct node which has sent
a [ready1] message which implies all the correct nodes
eventually receive at least (n−2t) echo messages. That is,
all the correct nodes waiting in Epoch 1 or Epoch 2 will
satisfy the condition of sending a [ready2] message and go
to Epoch 3. Any correct node Pi, Pj waiting in Epoch 3
will eventually receive all the [ready1] or [ready2] messages
sent from correct nodes in P (C20δ

i ([ready1,ready2], vi))
and P (C20δ

j ([ready1,ready2], vj)) accordingly, and output
vi, vj accordingly.

Now we show that P (C20δ
i ([ready1,ready2], vi)) and

P (C20δ
j ([ready1,ready2], vj)) have at least one common

honest player, which implies the cluster centers are close.
To see this note that each of these clusters have at least

(n− 2t) > n− 2(n/4) = n/2 correct nodes. That is more
than n correct nodes in total. But there are total n nodes
in the networks. This implies at least some of the corrects
nodes are common in both clusters. Let Pl be such a
node.

Now using triangular inequality we have,

d(vi, vj) ≤ d(vi, vi[l]) + d(vi[l], vl)

+ d(vl, vj [l]) + d(vj [l], vj), (50)

≤ 20δ + δ + δ + 20δ = 42δ. (51)

Now the second termination condition.

Lemma 7 (Termination 2). For t < n/4, δ > 0, qsucc > 0,
if a correct node Pi completes the protocol then all the
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correct nodes complete the protocol with probability at least

qn+2n2

succ .

Proof. This lemma is a corollary of lemma 6. Because
lemma 6 ensures completion with probability at least

qn+2n2

succ .

Now we are ready to prove that our protocol satisfies
the correctness condition of definition 3.

Lemma 8 (Correctness). For t < n/4, δ > 0, qsucc > 0,
if a correct sender Ps sends (init,u) and a correct node

Pi outputs vi then d(u, vi) ≤ 14δ with probability qn+2n2

succ .

Proof. There are at most n init messages, n2 echo mes-
sages and n2 [ready1] or [ready2] type messages exchanged

in the protocol. With probability at least qn+2n2

succ all of
these transmissions which are between honest players are
successful.

In this case we prove the lemma in three steps. First,
we show that all the [ready1] type directions sent from
correct node are close to u. Secondly, we show that that
all the [ready2] type directions sent from the correct nodes
are close to u. And finally, from these we conclude the
proof.

For the first step, let’s assume that correct node Pi
has sent a ([ready1], vi) message in Epoch 2. So, it has
received at least (n− t) echo type messages, of which at
least (n − 2t) are from correct nodes. Let’s assume for
some correct node Pj wi[j] ∈ C4δ

i (vi). As Pj is correct,
using the triangle inequality, we have,

d(u,wi[j]) ≤ d(u, uj) + d(uj , wi[j]), (52)

≤ δ + δ = 2δ. (53)

The diameter of the cluster C4δ
i (vi) is 4δ. So, we have,

d(vi, wi[j]) ≤ 2δ. Using this and (53) with the triangle
inequality, we have,

d(u, vi) ≤ d(u,wi[j]) + d(wi[j], vi), (54)

≤ 2δ + 2δ = 4δ. (55)

Now, for the second step, let’s assume that the correct
node Pl has sent a ([ready2], vl) message from Epoch 1
or Epoch 2. So, vl is a cluster center of at least (n− 2t)
echo type messages. Of which at least (n− 3t) are honest.
So, a similar reasoning to the previous step shows,

d(u, vl) ≤ 4δ. (56)

Finally, as the sender is correct from lemma 5 we know,
all the honest players eventually enters Epoch 3 and
successfully completes the epoch.

Let’s assume a correct node Pi has received
a cluster of [ready1] or [ready2] type directions
C20δ
i ([ready1,ready2], vc) of size at least (n − t). So,

there is a correct node Pk for which vi[k] ∈

C20δ
i ([ready1,ready2], vc). Here, C20δ

i ([ready1,ready2], vc)
is a cluster of diameter 20δ. So, we have d(vi[k], vc) ≤ 10δ.
Using the triangle inequality with this, and (55) and (56),
we have,

(.u, vc) ≤ d(u,wi[k]) + d(wi[k], vc), (57)

≤ 4δ + 10δ = 14δ. (58)

This concludes the proof.

Lemma 9. If a two-node direction estimation protocol is
used that transmits m qubits to δ approximation a direc-
tion which succeeds with probability qsucc ≥ (1− e−Ω(mδ))

then with probability at least qn+2n2

succ ≥ 1− e−Ω(mδ−logn),
all the direction transmissions of init, echo, [ready1] and
[ready2] type messages are successful.

Proof. There are at most n init messages, n2 echo mes-
sages and n2 [ready1] or [ready2] type messages exchanged

in the protocol. With probability at least qn+2n2

succ all of
these transmissions which are between honest players are
successful. Now,

qn+2n2

succ ≥ (1− e−Ω(mδ2))n+2n2

, (59)

≥ 1− (n+ 2n2)e−Ω(mδ2), (60)

≥ 1− e−Ω(mδ2−logn) (61)

Here inequality (60) follows using Bernoulli’s inequality,
which is, (1 +x)e > 1 + rx for all real x ≥ −1 and integer
r ≥ 2.

We can see that theorem 2 follows from lemma 5, 6, 7,
8 and 9.

B. Asynchronous interactive consistency

Our protocol uses the solution to the following interac-
tive consistency problem as a subroutine which was first
proposed by Pease, Shostak and Lamport [24].

Definition 4 (The Interactive Consistency Problem).
Consider a complete network of n nodes in which com-
munication lines are private. Among the n nodes up to
t might be faulty. Let P1, P2, . . . , Pn denote the nodes.
Suppose that each node Pi has some private value of
information ui ∈ |V | ≥ 2. The question is whether it
is possible to devise a protocol that, given n, t ≥ 0, will
allow each correct nodes to compute a vector of values
~vi ∈ V n with an element for each of the n processors,
such that:

1. All the correct nodes Pi compute exactly the same
vector ~v ;
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2. The element of this vector corresponding to a given
correct node is the private value of that node. That
is, ∀i, ~v[i] = ui

Note that, here V is a set of classical values. That is
elements of V can be encoded in classical bits.

For an asynchronous network, Ben-Or and El-Yaniv [25]
give a protocol Asynchronous-IC which solves this problem
for t < n/3 in constant expected time. Here time means
the number of steps performed by any correct node while
playing the protocol. We use this protocol as a subroutine.

C. Asynchronous Agreement

So far we have presented an asynchronous broadcast
protocol where a designated sender initiates the protocol
with a direction. One major weakness of the protocol
is that, if the sender is faulty then the protocol might
never terminate. Because in this case the correct nodes
cannot decide whether the sender is faulty and not re-
sponding, or correct but very slow. On the other hand, in
an asynchronous reference frame agreement protocol the
main goal is to allow the correct nodes to agree on some
direction despite the presence of—up to a certain num-
ber of—unidentified faulty nodes in the network. This
requires extra caution to make sure that the protocol even-
tually terminates. We show that our protocol 3 A-Agree
successfully solves this problem by proving theorem 1.
We restate the theorem here.

Theorem 1. In a complete network of n nodes that are
pairwise connected by public quantum channels, if a bi-
partite δ-estimate direction protocol that uses m qubits to

achieve success probability qsucc ≥ 1 − e−Ω(mδ2) is used,
then protocol A-Agree is a 34δ-asynchronous reference
frame agreement protocol with success probability at least

1− e−Ω(mδ2−logn), that can tolerate up to t < n/4 faulty
nodes.

There are three epochs in protocol 3 any correct node
that successfully terminates must start at Epoch 0 and
terminate at Epoch 3. At each Epoch the nodes inside it,
and all the messages transmitted and received by the node
while in that Epoch satisfies some invariances properties.
We describe and prove these properties in the following
lemmas. We first show that an honest node will eventually
enter Epoch 1.

Lemma 10. For t < n/4, all the correct nodes eventually
enter Epoch 1 of A-Agreement with probability at least

qn
2+2n3

succ ≥ 1− e−Ω(mδ−logn).

Proof. Each of the n nodes has initiated an A-Cast in
Epoch 0. Each of the A-Cast as a success probability at

least qn+2n2

succ . So, with probability at least qn
2+2n3

succ all
the A-Casts from correct senders are successful. From
Lemma 9 this is at least 1− e−Ω(mδ−logn).

As t < n/4, there are at least (3t + 1) correct nodes
who initiates A-Cast as sender. According to Theorem 2

these (3t+ 1) A-Casts will eventually terminate. So, every
honest receiver will eventually receive at least (3t + 1)
directions and go to Epoch 1 with probability at least

qn
2+2n3

succ .

Each correct node stores the output of the Asynchronous-
IC protocol in an array bi. Here bi can be seen as a n× n
matrix of bits where row j is received from node j. We
can observe the following property of this matrix.

Lemma 11. For t < n/4 and correct node Pi, after
instruction 9 of Epoch 1 of A-Agreement, there exists a
column in bi with at least (t+ 1) 1s in it.

Proof. We show this by a counting argument. Note that a
correct node arrives at Epoch 1 only after it have received
at least (3t+ 1) directions from other players. As a result
after step 7 of Epoch 1 ai contains at least (3t+ 1) 1’s.
These ai’s become the rows of bi after step 9. There are
at most t faulty nodes. So, at least (3t+ 1) rows of bi are
originated from correct nodes. Each of these rows must
contain at least (3t+ 1) 1’s. So bi has at least (3t+ 1)2

1s.
But if no column had at least (t + 1) 1s, then there

would be at most (4t + 1) ∗ t 1s in bi. This contradicts
the fact that bi has at least (3t+ 1)2 1s. So, there must
exist a column with at least (t+ 1) 1s in it.

We show that all the correct nodes selects the same
column which has at least t+ 1 1s in it.

Lemma 12. After instruction 2 of Epoch 2 of A-
Agreement, if correct node Pi has ki and correct node
Pj has kj then ki = kj.

Proof. After completion of protocol Asynchronous-IC in
Epoch 1, all the correct nodes compute the same output
vector. That is, bi = bj . Also from lemma 11 we know
there exists a column in bi with at least (t+ 1) 1s. So, in
Epoch 2 step 2 when correct node Pi and Pj selects ki
and kj to be the chronologically smallest column index
that has at least (t+ 1) 1s. They select the same column.
i.e., ki = kj .

Now that every correct node agrees on a column ki of
bi we can observe that.

Lemma 13. If a correct node Pi selects ki in instruc-
tion 2 of Epoch 2 then the A-Cast initiated by Pki must
eventually complete successfully.

Proof. We show this by showing that at least one correct
node has completed the A-Cast initiated by Pki . Then the
lemma follows from the termination condition of A-Cast.

Each row bi[j] represents Pi’s knowledge of which A-
Casts are successfully received by Pj . For example, if
bi[j][l] = 1, then it means node Pj has reported to Pi
that it has completed the A-Cast initiated by node Pl
in Epoch 0. If there are at least (t + 1) 1s in the kith
column of bi, it means that there are (t+ 1) nodes who
report that they have received the A-Cast initiated by
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node Pki in Epoch 0. At least one of these is report is
from a correct node. So, from the termination condition
of A-Cast (Lemma 6) all the correct nodes eventually
successfully complete the A-Cast by Pk.

Now we are ready to prove theorem 1.

Proof. There are at most n AR-Cast initiated in Epoch 0
of which (n − t) are by correct nodes. From lemma 9

each of these succeeds with probability qn+2n2

succ ≥ 1 −
e−Ω(mδ−logn). So all the correct AR-Casts succeeds with,

qn
2+2n3

succ ≥ (1− e−Ω(mδ−logn))n, (62)

≥ (1− e−Ω(mδ−logn)). (63)

Here inequality (63) follows from Bernoulli’s inequality.
Conditioned on this we show,
a. Correctness. To prove consistency we show that

if a correct node Pi outputs vi and a correct node Pj
outputs vj then d(vi, vj) ≤ 42δ. From step 4 of Epoch 2
of A-Agreement we see that,

vi = wi[ki], (64)

vj = wj [kj ]. (65)

From lemma 6 we know that for t < n/4,

d(wi[ki], wj [kj ]) ≤ 42δ. (66)

This with (64) and (65) gives,

d(vi, vj) ≤ 42δ. (67)

b. Termination To prove termination we have to
show that every correct node Pi terminates with an output
direction vi.

To prove this we show that Pi eventually completes all
the Epochs of A-Agreement. From Lemma 10 we see that
Pi must enter Epoch 1 from Epoch 0. All the steps in
Epoch 1 are of constant expected time. So, an honest
player will eventually complete them and go to Epoch 2.
Only in step 3 of Epoch 2 Pi waits for completion of
A-Cast from Pki . But from Lemma 13 we know that this
A-Cast eventually successfully completes. All the other
incomplete A-Casts are then aborted at Step 5 and the
protocol terminates with output vi.
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