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1. Introduction.

In its most basic form, encryption ensures the secrecy of transmissions against eavesdroppers.
Besides secrecy, another desirable property is non-malleability, which guarantees that an active ad-
versary cannot modify the plaintext by manipulating the ciphertext. In the classical setting, secrecy
and non-malleability are independent: there are schemes which satisfy secrecy but are malleable, and
schemes which are non-malleable but transmit the plaintext in the clear. If both secrecy and non-
malleability are desired, then pairwise-independent permutations provide information-theoretically
perfect (one-time) security [12].

In the setting of quantum information, encryption is the task of transmitting quantum states
over a completely insecure quantum channel. Information-theoretic secrecy for quantum encryption
is well-understood. Moreover, significant progress has been made on more advanced constructions,
such as authenticated encryption [5], secure two-party computation [10], blind computation [8],
quantum fully-homomorphic encryption [9], and many more. Despite this high-level progress, a
basic aspect of quantum encryption remains largely unstudied. Indeed, quantum non-malleability
was considered in only one previous work, by Ambainis, Bouda and Winter [4]. Their definition
(which we call ABW-NM) requires secrecy, and that the “effective channel” Dec ◦ Λ ◦ Enc of any
adversary Λ is trivial1.

Unlike non-malleability, the closely-related subject of quantum authentication (where decryp-
tion is allowed to reject) has received significant attention (see, e.g., [1, 5, 7, 10, 11].) In this
setting, there are two definitions. The widely-adopted definition of Dupuis, Nielsen and Salvail
(DNS-authentication) asks that, regardless of whether decryption rejects, the average effective chan-
nel of any adversary does not touch the plaintext [10]. A more recent definition of Garg, Yuen and
Zhandry (GYZ-authentication) asks that, in the accept case, the adversary does not touch the
plaintext with high probability over the key (rather than on average) [11].

2. Summary of results.

In this work, we devise a new definition of quantum non-malleability (denoted NM). We prove
several new results about quantum non-malleability, quantum authentication, and the connections
between these two concepts. A summary of our results is as follows; we will focus on the exact case,
but all the definitions and results have appropriate relaxations to the approximate setting; see the
full paper for details [2].

1 More precisely, it is either the identity or replacement by a fixed state.



2.1. New definition. We give a new definition of quantum non-malleability (NM), which improves
on ABW-NM in a number of ways:

1. it is expressed in terms of entropic quantities, generalizing classical definitions [12];
2. it prevents more powerful attacks, which make use of side information about the plaintext;
3. it is immune to a devastating “plaintext injection” attack, whereby an adversary against an

ABW-NM scheme can send a plaintext of their choice to the receiver;
4. it does not require secrecy; instead, we show quantum non-malleability implies quantum secrecy.

The last point is analogous to the fact that quantum authentication implies encryption [5].
Informally, our definition states that any attack on the ciphertext will result in no information

gain – except via a “trivial attack” which is always possible against any scheme. In this trivial
attack, the adversary simply decides whether or not to destroy the ciphertext, and remembers that
choice in their side information. A formal definition is as follows. The relevant quantum registers
are: plaintext A, ciphertext C, user’s reference R, and adversary’s side information B.

Definition 1 A scheme is non-malleable (NM) if for any %ABR and any attack ΛCB→CB̃, the

effective channel Λ̃AB→AB̃ = Dec ◦ Λ ◦ Enc satisfies

I(AR : B̃)Λ̃(%) ≤ I(AR : B)% + h(p=(Λ, %)).

The binary entropy term h(p=(Λ, %)) captures the information gain of the aforementioned trivial

attack. Formally, p=(Λ, %) = F
(
TrB̃Λ((·)C ⊗ %B)

)2
is the squared entanglement fidelity of the

attack map as it acts on the ciphertext register if %B is input in the side information register.

2.2. New results on non-malleability. As mentioned above, our first result is that NM implies
secrecy. Here, secrecy stands for one of a number of equivalent notions of security; one may for
instance use analogues of IND [6] or SEM [3] for computationally unbounded adversaries.

Theorem 2 If a quantum encryption scheme is non-malleable (NM), then it is also secret.

We remark that this is a significant departure from the classical case, where secrecy and non-
malleability are independent properties.

Next, we show that NM implies ABW-NM, and give a separation scheme which is secure under
ABW-NM but insecure under NM. As described in [2], this separation scheme is in fact susceptible
to a powerful attack, whereby a simple adversary can replace the output of decryption with a
plaintext of the adversary’s choice.

Theorem 3 If a quantum encryption scheme is NM, then it is also ABW-NM.

On the other hand, if we restrict our attention to schemes where the encryption maps are unitary,
then we are able to show the following.

Theorem 4 Let Π be a quantum encryption scheme such that encryption Ek is unitary for all
keys k. Then Π is NM if and only if {Ek}k is a two-design.

Together with the results of [4], this implies that NM and ABW-NM are in fact equivalent for
unitary schemes. Finally, we can also characterize NM schemes in the general (i.e., not necessarily
unitary) case, as follows.
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Theorem 5 A scheme is NM if and only if, for any ΛCB→CB̃, there exist maps Λ′
B→B̃, Λ′′

B→B̃
such that the effective attack Λ̃AB→AB̃ has the form

Λ̃ = idA ⊗ Λ′ +
1

|C|2 − 1
(|C| 〈DK(1C)〉 − id)A ⊗ Λ

′′ .

The maps Λ′ and Λ′′ can be computed directly from a description of Λ [2]. This characterization
theorem shows that our notion provides ciphertext non-malleability : any ciphertext modification
results in the plaintext being replaced by DK(1C).

2.3. New results on quantum authentication. The techniques we developed for quantum non-
malleability also yield several new results on quantum authentication, as follows. We note that our
definitions of authentication deviate slightly from the original versions [10, 11], in that decryption
outputs a reject symbol in place of the plaintext (rather than setting a flag to “reject.”)

First, we show how to build authentication from non-malleability. Given an encryption scheme
Π = {Ek}, we define Πtag

t to be a new scheme whose encryption is % 7→ Ek
(
%A ⊗ |0〉〈0|⊗tB

)
E†k, and

whose decryption rejects unless B measures to |0t〉.

Theorem 6 If a scheme Π = {Ek} satisfies NM, then Πtag
t is 22−t-DNS-authenticating.

If the starting NM scheme is encryption via the Clifford group, then the result is the well-known
Clifford scheme for authentication [1].

Next, we show that GYZ-authentication implies DNS-authentication.

Theorem 7 If a scheme is ε-GYZ-authenticating, then it is also O(
√
ε)-DNS-authenticating.

This result is technically non-trivial: on one hand, GYZ requires high probability of success while
DNS only needs success-on-average; on the other hand, GYZ requires nothing in the reject case
while DNS still makes rather stringent demands.

Finally, we show that GYZ-authentication can be satisfied by a scheme which “tags” plaintexts
as before, and encrypts with a unitary 2-design. This is a significant improvement over the analysis
of [11], which required eight-designs for the same construction.

Theorem 8 Let Π = {Ek}k be a 2−t-approximate 2-design scheme. Then Πtag
t is 2−Ω(t)-GYZ-

authenticating.

Given the conclusions of Theorem 4, we may state this as follows: if a unitary scheme Π is non-
malleable, then Πtag

t is GYZ-authenticating. We remark that the simulation of adversaries in this
proof is efficient, in the sense of [7].

3. Conclusion and open problems.

In this work, we introduced a new definition of quantum non-malleability, a core concept in en-
cryption. Our notion addresses a major vulnerability in the previous definition, and can serve as
a primitive for constructing authentication schemes. When using unitary 2-designs (e.g., the Clif-
ford group) for non-malleable encryption, the resulting authentication schemes are secure under
the strongest known definitions [11]. We remark that our work is also a natural starting point for
future research on quantum non-malleability in the setting of many messages and computational
security assumptions.
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