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One of the most central and counterintuitive aspects of quantum information theory is the
ability for quantum players to outperform classical players at nonlocal games. There are multi-
player games for which an expected score can be achieved by quantum players that is higher than
that which can be achieved by any classical or deterministic player (see [3] for a survey of this
phenomenon). A useful corollary of this fact is that the quantum players that achieve such scores
are achieving certified randomness. Their expected score alone is enough to guarantee that their
outputs could not have been predictable to any external adversary. This is the basis for device-
independent randomness expansion [4, 5] 6, [7, 18,9, 10} 11} 12} 13} [14} 15]. When two players play
a game repeatedly and exhibit an average score above a certain threshhold, their outputs must be
highly random and can be postprocessed into uniformly random bits. The final bits are uniform
even when conditioned on the input bits used for the game.

In this work we consider another question about randomness: does a high score at a nonlocal
game imply that one player’s output is random to the other player? For example, suppose that
Alice and Bob play the CHSH game (where each is given randomly chosen input bits a and b,
respectively, and the score awarded is 1 if their outputs x,y € {0,1} satisfy x §y = a A b, and
0 otherwise). After the game is played, does Alice possess any information which is random to
Bob, other than her input bit a? Stated differently, if Bob were given Alice’s bit a after the game is
played, can we prove that it is impossible for him to perfectly guess x?

If we can prove that Bob cannot guess Alice’s output bit perfectly, then (4, x) is more random
to Bob than a by itself, and we have shown that Bell inequalities also allow the expansion of local
randomness. Local (rather than global) randomness is a resource in cryptographic scenarios in
which two parties are cooperating but do not trust one another.

In the present work we prove a highly general result on the existence of local randomness, and
also give an application (certified deletion from untrusted devices).

Quantifying local randomness. We prove the following (see Theorem 14 in [1]). Let w.(G) de-
note the optimal classical score for a game G.

Theorem 1.1. Let G be a nonlocal game which has complete support (i.e., each input pair (a,b) occurs
with nonzero probability). Suppose that Alice and Bob achieve an expected score of w.(G) + € at the game
G. Then, after the game is concluded, Bob cannot recover Alice’s output (given her input) with probability
greater than 1 — €2/ Kg.
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The expression K denotes a constant defined by
Kc =(9/4) Lo P(a)P(a|b)~". (1.1)

Global randomness (i.e., randomness in the outputs xy which vanishes when conditioning
on either Alice’s or Bob’s information) is useful for cooperative tasks such as QKD, while local
randomness is useful for tasks that do not involve full mutual trust (see., e.g., [16]). This result
shows that these complementary resources must occur together.

There has been other work showing upper bounds on the probability that a third party can
guess Alice’s output after a game (e.g., [17], [18], [19]) and single-round games have appeared
where Bob is sometimes given only Alice’s input, and asked to produce her output (e.g., [20], [21],
[22]). We believe the novelty of our scenario in comparison to these papers is that we consider
the randomness of Alice’s output after Bob has performed his part of a quantum strategy, and
thus has potentially lost information due to measurement. The proof of Theorem 1.1 proceeds by
supposing that Alice’s outputs are highly predictable to Bob, and then performing a construction
which approximately reduces the player’s strategies to a separable one (thus showing that the
original expected score cannot be much larger than w,(G)). This can be thought of as an extension
of arguments used in the three-party case [18].

While Theorem [I.1]is highly general, its downside is that the upper bound expressed on Bob’s
guessing probability is only slightly smaller than 1. We therefore show another method for achiev-
ing potentially stronger upper bounds which is based on the Navascues-Pironio-Acin hierarchy
[23].
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Figure 1: Upper bound on the guessing probability for the CHSH game.

The NPA hierarchy has been frequently used to constrain the behavior of quantum correlations
— i.e., measurement outcomes arising from commuting sets of measurements { M };, {N]y }jona
quantum system Q. In our case, we must contend with the fact that not all the measurements
are commuting: Bob’s measurement when he guesses Alice’s output may not commute with the
measurement he performed on the first round. Fortunately, as observed by other authors [24,
25], the NPA hierarchy can be adapted to non-commuting cases. By a modification of the NPA
hierarchy, we obtain the upper bound in Figure [If on Bob’s guessing probability as a function of
the expected CHSH score. (See section 2 of [2]].) This bound is tight up to 0.02.

Figure (1| invites generalization to any games where the input and output alphabets are suffi-
ciently small.



Certified deletion. Certified local randomness is a resource in any scenario in which two players
are using untrusted devices and also do not trust one another. As an example application, we
prove security for a simple certified deletion protocol.

In certified deletion, Alice wishes to prepare a secret classical message m, a classical key k,
and a quantum encryption | m | of m, satisfying two conditions. The first is that m can be perfectly
recovered from |m|and k. The second is that if Bob possesses | m | only, there is a deletion protocol
involving classical communication (only) between Alice and Bob which will allow Alice to guar-
antee that Bob has destroyed the message [ ]. The security requirement is that after the deletion
procedure is over, Bob will not be able to recover m even if he were given k.

Variants of this problem have been studied in other settings (e.g., [26] in a computational set-
ting, [27, [16] in a bounded storage model). This problem is similar to oblivious transfer, but is
strictly weaker, and thus known impossibility proofs for oblivious transfer do not apply.

Our results on local randomness suggest a way of performing certified deletion: proving that
Alice’s message m is inaccessible to Bob is equivalent to proving that m is locally random. To
demonstrate this we prove security for a single-bit certified deletion protocol (Figure 3 in [2]).

(o)
ool o
1
Alice Bob

In the Magic Square game, Alice is given a random row in a 3 x 3 grid and has to fill it in with
bits that sum to an even number, and Bob is given a random column in a 3 x 3 grid and has to
fill it in with bits that sum to an odd number. In order to win the game, the bits in overlapping
squares (boxed) have to agree. We show that in any quantum strategy that wins with probability
1 — €, any given off-column bit (circled) in Alice’s row is almost perfectly unpredictable to Bob
(see Corollary 3 in [2]). Thus the Magic Square game certifies near-perfect local randomness.

The protocol DEL in Figure 3 in [2] proceeds by first having Alice play her side of the Magic
Square game N times with an untrusted device. Alice then chooses a random round i and records
a random off-column bit m from the ith round. The key k consists of the round i; and the number
of the column she chose. The deletion procedure then consists of Bob playing his side of the Magic
Square game and Alice confirming that the average score is above 1 — €. We prove the following.

Theorem 1.2. Assume that Protocol DEL succeeds with probability at least 6. Then, the probability that
Bob can recover m given k is at most 3 + F(e, N, 6), where imy_.c0e—0 F(€, N, 8) = 0.

(See Theorem 4 in [2] for the full statement.) Our proof is based on the recent Magic Square
rigidity result [28] and Azuma’s inequality.

Further directions. A natural next step is to try to show that local randomness accumulates
over multiple repetitions of a nonlocal game. Specifically, one could try prove that if a complete-
support game G is repeated N times and achieves a superclassical score, then the smooth min-
entropy of Alice’s outputs is high even when conditioned on Alice’s inputs and all of Bob’s infor-
mation. This would allow the generation of arbitrary amount of uniform local randomness (even
from a noisy device). To our knowledge the current techniques for randomness expansion do not
apply to this scenario (for example, [14] requires a Markov condition which is not satisfied in the
blind case) but they invite extensions.
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