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We present Bristol University’s recent activities in the UK Quantum Communications Hub, where we
are developing short-range free-space QKD technologies, chip-scale quantum communication systems
and, quantum-secured networking applications and demonstrations. This work presents a coherent
framework for the development of quantum-secured networks and applications from government and
commercial transactions to consumers and the home.

Since its launch in 2015, the vision of the UK Quantum
Communications Hub [1] is to develop new quantum com-
munications technologies [2] that will reach new markets,
enabling widespread use and adoption in many scenarios.
To achieve this target, on-going work at the University of
Bristol, one of the Hub’s partner universities, spans the
following areas

• Short range, free-space, QKD technologies

• Chip-scale QKD technology

• Quantum communication networking

I. SHORT RANGE, FREE-SPACE QKD

We demonstrate a credit card size quantum key distri-
bution (QKD) transmitter linked to a rack sized, wall
mounted receiver. This short-range free-space QKD
technology enables many-to-one communications for con-
sumer, commercial and defence markets.

The transmitter comprises 4 LED chips behind a pat-
terned glass polarizer, the light from these LEDs is colli-
mated by a short piece of fibre optic to prepare BB84 [3]
states in polarization. This also provides spatial filtering
of the light but at the expense of applying a random ro-
tation to the states on the Bloch sphere, this is constant
for all states and as such can be calibrated out.

We have developed a docking solution based on a card
slot which aligns the fibre ferrule on the transmitter to
the receiver optics. The fixed node receiver hardware
(the “Quantum ATM”) features modular optics and elec-
tronics hardware to enable easier development and inte-
gration of different QKD protocols. Our current optics
module is a six state QKD receiver, which allows for a
live characterisation of the QKD transmitter and also
presents the opportunity to upgrade our transmitters to
a six state or reference-frame-independent protocol with
future developments involving active tracking systems.

This system is intended to allow access into a larger
quantum network for a wide audience by providing many

small, low-cost, medium bandwidth devices which com-
municates with the “Quantum ATM”.

II. CHIP-BASED QUANTUM
COMMUNICATIONS

We demonstrate chip-based approach to quantum
communications delivering compact, lightweight, robust,
low-cost, low-energy devices for mass manufacture and
widespread deployment [4]. Integrated photonics has
provided such miniaturisation, manufacturability and
reconfigurability required for demanding applications
within classical telecommunication and photonic tech-
nologies, and has recently been adopted in many quan-
tum technologies [5].

A quantum photonic interconnect has demonstrated
the coherent distribution of qubit entangled states be-
tween two silicon-based devices [6], and can lead the way
to further experiments in teleportation and multi-party
communications.

We have demonstrated a GHz clocked chip-to-chip
quantum communication system is demonstrated, em-
ploying InP-based transmitter and SiON-based receiver
devices [7]. Performance is comparable to state-of-the-
art with multi-protocol QKD operation achieved. Secure
rates were further increased by use of biased-basis proto-
cols and wavelength-division-multiplexing of two QKD
transmitters and receivers. By exploiting the minia-
turised technology and ease of manufacturing, the inte-
grated photonic platform offers a scalable approach to
overcome data rate limitations.

Quantum random number generator technology with
integrated photonics allows for low-footprint devices to
be fabricated achieving ≥1 Gbps of post-processed ran-
dom numbers, improving security of both classical and
quantum cryptographic systems [8]. Further improve-
ments in security can be explored through the use of
measurement-device-independent QKD, relieving detec-
tor technology vulnerabilities.

Further miniaturisation has been achieved by demon-
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FIG. 1: Short Range, Free-Space QKD and Chip-based Quantum Communications: Prototype quantum-enabled
“credit-card” and “ATM” as well as an integrated photonic QKD transmitter chip.

strating novel operation of circuits in a standard in-
tegrated silicon photonic platform [9]. By utilising
high-speed carrier depletion modulation we have demon-
strated QKD transmitters in a platform that is compat-
ible with micro-electronic fabrication that could lead to
the seamless integration of quantum photonic and elec-
tronic devices.

On-going development of bespoke photonic and elec-
tronic hardware and real-time software will enable remote
deployment of chip-based QKD solutions, and the collab-
oration to develop suitable calibration and certification
techniques with the UK National Physical Laboratory
[10] will contribute to the effort towards standardisation
for commercial devices.

III. QUANTUM-SECURED NETWORKS

We are developing technology for ubiquitous applica-
tion of quantum security in communication networks,
addressing the vital issues of telecommunications and
cryptographic integration. We are working to estab-
lish a UK Quantum Network (UKQN) which integrates
QKD into secure communication infrastructures at ac-
cess, metropolitan and inter-city scales. Our networks

are facilitating device and system trials, integration of
quantum and conventional communications, and demon-
strations for stakeholders, customers, the media and the
wider public.

We have demonstrated the use of quantum-secured
network-function-virtualisation (NFV) orchestration
over an software-defined-network (SDN) controlled
optical network with time-shared QKD resources [11].
This work enabled the secure orchestration of network
functions with the use of commercial QKD systems [12].
This demonstration provides a real-world application
and quantum-aware networks, with a reduced capital ex-
penditure by time-sharing the transmitters and receivers
of each node to ease adoption.

Further work includes the automated testing and char-
acterisation of fibre networks for the deployment of QKD.
This includes both Bristol-is-Open (BiO) [13] and the
National Dark Fibre Infrastructure Service (NDFIS),
where both metro-scale and long-haul QKD operation are
demonstrated in single core bundles as well as multi-core
fibres. This work provides infrastructure and resource
for a quantum test-bed for experimental and commer-
cial systems, as well as field-trials of quantum-enhanced
applications.
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FIG. 2: Quantum-Secured Networks: The Bristol is Open (BiO) metro-scale network, and incorporation in to the UK
Quantum Backbone utilising the National Dark Fibre Infrastructure Service (NDFIS) connecting partners from the the UK
Quantum Communication Hub.
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