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Introduction.—Quantum key distribution (QKD) will
play an important role in quantum-safe cryptography.
The main theoretical problem in QKD is to calculate how
much secret key can be distributed by a given protocol.
A crucial practical issue is that the QKD protocols that
are easiest to implement with existing optical technology
do not necessarily coincide with the protocols that are
easiest to analyze theoretically [1]. In addition, device
imperfections and side channels may have a significant
effect on the key rate. Addressing these issues requires
a robust theoretical method for calculating the key rate.
Unfortunately, analytical methods are highly technical,
are often limited in scope to particular protocols, and
invoke inequalities that introduce looseness into the cal-
culation.

We therefore focus our efforts on numerical methods,
which are inherently more robust to both device imper-
fections and changes in protocol structure. Furthermore,
numerics can be made user-friendly, such that the user
needs only to define the specifications of the protocol and
then the computer performs the key rate calculation. As
an example, our group recently released a software pack-
age for this purpose [17].

The key rate calculation involves minimizing a convex
function over all eavesdropping attacks that are consis-
tent with the experimental data [2–4]. When employing
numerics, one issue that arises is the efficiency of this op-
timization. This issue is particularly important for high-
dimensional QKD protocols, or protocols with many sig-
nal states, since the relevant optimization involves many
parameters. In such cases, the computational time can be
very long - sometimes days - so it is crucial to implement
a high efficiency algorithm.

Another issue with numerics is reliability. This is more
subtle but also more important than the efficiency issue.
Due to the inherent paranoia in cryptography, it is nat-
ural to ask whether numerically calculated key rates are
trustworthy. After all, computers have finite numerical
precision. Furthermore, optimization algorithms never
truly reach the global optimum, as termination condi-
tions always have some non-zero tolerance. Since QKD is
now a serious, real-world technology, key rates must come
with a security guarantee, and hand-waving at these nu-
merical issues will not suffice.

In this work, we present a numerical method that
solves both the reliability and efficiency issues. Our
method provides reliable lower bounds on the key rate
with arbitrary tightness for finite-dimensional QKD pro-
tocols. Furthermore it is highly efficient and typically re-

turns a key rate within seconds or less on one’s personal
computer. To illustrate our method, we apply it to three
practically interesting scenarios. Namely we consider the
Trojan-horse attack [5–7], the BB84 protocol with detec-
tor efficiency mismatch [10], and the BB84 protocol with
phase-coherent signal states [8, 9]. We improve upon lit-
erature key rates in all three cases.

Background.—The well-known asymptotic key rate
formula [11] is given by the difference of two information-
theoretic quantities associated, respectively, with privacy
amplification and error correction. These two terms ap-
pear in the following expression for the key rate

K =

(
min
ρ∈S

f(ρ)

)
− ppass · leakEC

obs . (1)

We explain this expression in more detail in the attached
manuscript. For now, we note that ppass refers to the
probability for passing the post-selection (e.g., sifting) in
the protocol, leakEC

obs denotes the number of bits of in-
formation that Alice publicly reveals during error correc-
tion, and f(ρ) is a convex function of the state ρ. Here,
ρ is the state shared by Alice, Bob, and possibly other
parties involved the protocol. While ρ is unknown, the
asymptotic experimental data gives linear constraints on
it, of the form

Tr(Γiρ) = γi, ∀i , (2)

where the Γi are Hermitian operators. Let S denote the
set of states that satisfy these constraints

S = {ρ ∈ H+ | Tr(Γiρ) = γi,∀i} , (3)

where H+ is the set of positive semidefinite operators.
Also, we add the identity to the set {Γi} to enforce that
Tr(ρ) = 1, giving a total of n constraints.

The key rate calculation is an optimization problem,
since we must consider the worst-case scenario (the most
powerful eavesdropping attack) that is consistent with
the experimental data. Hence Eq. (1) involves minimiz-
ing over all ρ ∈ S. Note that the both ppass and leakEC

obs
are exactly determined by the observations, and hence
we can pull them out of the optimization in (1).

Main Result.—We now show how to lower bound the
minimization problem in (1). Our strategy is to break
up the key rate calculation into two steps:
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• Step 1: Find an eavesdropping attack that is close
to optimal, which gives an upper bound on the key
rate.

• Step 2: Convert this upper bound to a lower bound
on the key rate.

With our approach, Step 1 does not need to be perfect
- any eavesdropping attack may be used as an input for
Step 2. However, if Step 1 returns the optimal attack,
our lower bound calculated by Step 2 will be tight. Fur-
thermore, our method for Step 2 is continuous around
the optimal attack. Thus, finding a near-optimal attack,
produces a near-optimal lower bound.

Step 1 may be solved in various ways using convex op-
timization methods [12]. For concreteness, the attached
manuscript presents one such method, which exploits the
structure of our problem and is relatively fast. On the
other hand, our main result is a method for performing
Step 2, stated in the following theorem.
Theorem 1: Given any ρ ∈ S, then(

min
ρ∈S

f(ρ)

)
⩾ β(ρ) , (4)

where

β(σ) := f(σ)− Tr(σT∇f(σ)) + max
y⃗∈S∗(σ)

γ⃗ · y⃗ , (5)

S∗(σ) :=

{
y⃗ ∈ Rn |

∑
i

yiΓ
T
i ⩽ ∇f(σ)

}
. (6)

Here, γ⃗ = {γi} is the vector of expectation values from
(2). Furthermore, equality in (4) holds if ρ corresponds
to an optimal attack.

Figure 1 illustrates the basic idea of Theorem 1. The-
orem 1 takes any feasible eavesdropping attack ρ, which
gives an upper bound the key rate, and converts it into
a reliable lower bound on the key rate. The fact that (5)
involves a maximization is crucial for the reliability of
the calculation. Since maximization involves approach-
ing the solution from below, every number that the com-
puter outputs is a lower bound on α, even if the computer
does not reach the global maximum.

In the attached manuscript, we generalize Theorem 1
to a bound that holds even when one’s computer suffers
from numerical imprecision, e.g., in storing the variables
{Γi} and {γi}. Furthermore, we prove that our method
yields arbitrarily tight bounds on the key rate, i.e., there
is no looseness in our method.

Examples.—In what follows we apply our method to
three examples of practical importance.

Trojan-horse attack.—A well-known hacking attack on
the phase-encoded BB84 protocol is the Trojan-horse at-
tack [13]. This exploits the fact that Alice’s phase modu-
lator is not isolated from Eve. Eve sends a pulse of light,

f
ρ0

ρ ρ∗

S

Step 1

Step 2 Our lower
bound

Linearization

Dual

FIG. 1: Illustration of our lower-bounding method. Step 1
is any algorithm that takes an initial feasible point ρ0 and
outputs another feasible point ρ, which may or may not be
close to the optimal attack ρ∗. Note that f(ρ) provides an
upper bound on f(ρ∗) and, hence, on the key rate. Step 2
converts this into a lower bound, by solving the dual problem
of the linearization of f about point ρ. Since the linearization
undercuts the curve f and since the dual problem is a max-
imization, our lower bound is reliable even if the numerical
calculation does not reach the global optimum.

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Our method
Ref.[16] method
Ref.[7] method

µout = 0

µout = 0.01

µout = 0.04

Error rate, Q

K
ey

ra
te

FIG. 2: Key rate vs error rate for the single-photon BB84
protocol under a Trojan-horse attack. The key rate is plotted
for different values of µout. Our numerical method improves
on our previous numerical approach in Ref. [16], which in turn
gives higher key rates than the analytical method of Ref. [7].

some of which passes through Alice’s phase modulator
and reflects back to Eve, carrying the information about
Alice’s encoding. Let µout be the mean photon number
of the light reflected back to Eve. Figure 2 shows the key
rate for several values of µout, for the case where the sig-
nal is a single photon. Our method gives higher key rates
than those from our previous numerical approach [16],
which in turn gives higher key rates than an analytical
analysis from Ref. [7].

Efficiency mismatch.—Detector efficiency mismatch is
an important issue in QKD because it leads to hacking
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FIG. 3: Key rate for the BB84 protocol with detector effi-
ciency mismatch. Curves are shown for three values of de-
polarizing probability p (0, 0.05, 0.1). The x-axis is the effi-
ciency of the least efficient detector, with the other detector’s
efficiency being set to one.
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FIG. 4: Key rate versus signal-state amplitude α for three
values of transmission probability - η = 1, 0.8, 0.6 - for the
Huttner et al. [8] protocol.

attacks if not accounted for [14, 15]. Ref. [10] gave an
analytical lower bound on the key rate in the case of
efficiency mismatch, assuming Bob receives at most one
photon. For comparison, we assume one detector has
perfect efficiency and the other has efficiency η. Figure 3
shows the result of our numerics for this scenario. For all
values of η, our method gives higher key rates than the
method of Ref. [16], which in turn are higher than those
of Ref. [10].

BB84 with phase-coherent signals.—Finally, consider a
protocol proposed by Huttner et al. [8] and analyzed by

Lo and Preskill [9]. This is a phase-encoded BB84 proto-
col, but using coherent states of amplitude α instead of
single-photon states. This is quite practical because the
experimenter does not need to do phase randomization.
Ref. [9] gave an analytical lower bound on the key rate for
this protocol, as a function of transmission probability η
and amplitude α. Their theoretical curves are shown as
dotted lines in Fig. 4, for several values of η. In the same
plot, we show the result of our numerical optimization as
solid lines, with the key rates obtained from the method
in Ref. [16] shown as dashed-dotted lines. Interestingly
our numerics give higher key rates than the previous lit-
erature over the entire parameter range.

Conclusions.—Reliability is the most important issue
with numerical key rate calculations, since key rates must
come with a security guarantee. In this work, we pre-
sented a method that solves the reliability issue, while
retaining the efficiency of convex optimization and elim-
inating all looseness from the calculation.
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The holy grail of quantum key distribution (QKD) theory is a robust, quantitative method to
explore novel protocol ideas and to investigate the effects of device imperfections on the key rate.
We argue that numerical methods are superior to analytical ones for this purpose. However, new
challenges arise with numerical approaches, including the efficiency (i.e., possibly long computation
times) and reliability of the calculation. In this work, we present a reliable, efficient, and tight
numerical method for calculating key rates for finite-dimensional QKD protocols. We illustrate our
approach by finding higher key rates than those previously reported in the literature for several
interesting scenarios (e.g., the Trojan-horse attack and the phase-coherent BB84 protocol). Our
method will ultimately improve our ability to automate key rate calculations and, hence, to develop
a user-friendly software package that could be used widely by QKD researchers.
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I. INTRODUCTION

The possibility of large-scale quantum computers in
the near future has spawned the field of quantum-safe
cryptography [1]. This includes classical techniques
based on computational hardness as well as information-
theoretic approaches via physical assumptions. The lat-
ter invokes either assumptions about the physical channel
[2], or less restrictive, the assumption only that the laws
of quantum physics are correct, which is the basis for
quantum key distribution (QKD). See Ref. [3] for a re-
view of QKD and Ref. [4] for an update of recent progress.
Both classical methods and QKD will likely play a role
in quantum-safe cryptographic implementations.

The maturity of QKD technology is evidenced by a
recent QKD satellite launch [5] as well as developments
of fiber-based networks [6–8], suggesting that global net-
works are on the horizon. Still, there remains important
open problems in QKD theory, such as (1) optimizing the
practicality of QKD protocols to make them easily im-
plementable, and (2) understanding the effects of device
imperfections and side channels.

Solving these problems requires a robust theoretical
method for evaluating a QKD protocol’s performance,
which involves a detailed security analysis. Performance
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is then quantified by the key rate - the number of bits
of secret key obtained per exchange of quantum signal.
Unfortunately, analytical methods for calculating the key
rate are highly technical, are often limited in scope to par-
ticular protocols, and invoke inequalities that introduce
looseness into the calculation.

We therefore focus our efforts on numerical methods,
which are inherently more robust to both device imper-
fections and changes in protocol structure. Furthermore,
numerics can be made user-friendly, such that the user
needs only to define the specifications of the protocol and
then the computer performs the key rate calculation. As
an example, our group recently released a software pack-
age for this purpose.1

The key rate calculation involves minimizing a convex
function over all eavesdropping attacks that are consis-
tent with the experimental data [9–11]. When employing
numerics, one issue that arises is the efficiency of this op-
timization. This issue is particularly important for high-
dimensional QKD protocols, or protocols with many sig-
nal states, since the relevant optimization involves many
parameters. In such cases, the computational time can be
very long - sometimes days - so it is crucial to implement
a high efficiency algorithm.

Another issue with numerics is reliability. This is more
subtle but also more important than the efficiency issue.
Due to the inherent paranoia in cryptography, it is nat-
ural to ask whether numerically calculated key rates are
trustworthy. After all, computers have finite numerical
precision. Furthermore, optimization algorithms never
truly reach the global optimum, as termination condi-
tions always have some non-zero tolerance. Since QKD is
now a serious, real-world technology, key rates must come
with a security guarantee, and hand-waving at these nu-
merical issues will not suffice.

In this work, we present a numerical method that
solves both the reliability and efficiency issues. Our
method provides reliable lower bounds on the key rate
with arbitrary tightness for finite-dimensional QKD pro-
tocols. Furthermore it is highly efficient and typically
returns a key rate within seconds or less on one’s per-
sonal computer. To illustrate our method, we apply it to
three practically interesting scenarios. Namely we con-
sider the trojan horse attack [12–14], the BB84 protocol
with phase-coherent signal states [15, 16], and the BB84
protocol with detector efficiency mismatch [17]. We im-
prove upon literature key rates in all three cases.

Directly calculating the key rate involves a minimiza-
tion problem (see Sec. II). When solving this on a com-
puter, the algorithm will terminate before reaching the
global optimum and hence will return an upper bound on
the true key rate. However, we are interested in reliable
lower bounds, i.e., achievable key rates. In previous work

1 This software can be downloaded from the website:
https://lutkenhausgroup.wordpress.com/qkd-software/.

[18], we noted this issue as motivation for transforming
the optimization problem to the so-called dual problem
[19]. This transforms the minimization problem into a
maximization problem. Therefore, the dual problem will
return a lower bound on the key rate, as desired. This
method led to novel insights for particular protocols as
discussed in [18]. However, in order to simplify the op-
timization in the dual problem, we invoked an inequal-
ity that in some cases introduces looseness into the key
rate and, furthermore, makes the optimization problem
non-convex. Ultimately the non-convexity reduces the
efficiency of this approach, making it difficult to apply to
protocols with large numbers of signal states.

We therefore present a method here that retains the
efficiency of convex optimization, but also has the reli-
ability of the dual problem. Our approach is to break
up the calculation into two steps. The first step approx-
imately minimizes the convex function, and hence finds
an eavesdropping attack that is close to optimal. The
second step takes this approximately optimal attack and
converts it into a lower bound on the key rate. Breaking
it up into these two steps adds flexibility to our method,
in that any algorithm can be employed for the initial
minimization of the convex function.

Our main technical result is to provide a recipe for
performing the second step, i.e., for converting a near-
optimal attack into a tight lower bound on the key rate.
At the technical level, we derive our main result first
by linearizing the problem and then by transforming to
the dual problem of the subsequent linearized problem.
The idea is that, for a convex function, any linearization
(about any point) will undercut (and hence lower bound)
the curve. One obtains the tightest lower bound by this
method if one linearizes about a point corresponding to
the global minimum of the convex function.

In what follows we first give background on key rate
calculations in the next section. Then we present our
main result in Sec. III. In Sec. IV we describe how our
approach applies to a general class of QKD protocols.
We illustrate our method for three interesting example
protocols in Sec. V, and finally we conclude in Sec. VI.
Technical details can be found in the Appendix.

II. BACKGROUND

The well-known asymptotic key rate formula [20] is
given by the difference of two information-theoretic quan-
tities associated, respectively, with privacy amplification
(PA) and error correction (EC). These two terms appear
in the following expression for the key rate

K = ppass

(
min
ρ∈S

f̂(ρ)− leakEC
obs

)
(1)

=

(
min
ρ∈S

f(ρ)

)
− ppass · leakEC

obs . (2)

We explain this expression in more detail in Sec. IV.
For now, we note that ppass refers to the probability
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for passing the post-selection (e.g., sifting) in the pro-
tocol, leakEC

obs denotes the number of bits of information
that Alice publicly reveals during error correction, and
f(ρ) = ppass · f̂(ρ) is a function defined below in Eq. (5).

The first term in (1) is the PA term. Here, ρ is the den-
sity operator shared by Alice, Bob, and possibly other
parties involved the protocol. (Note that prepare-and-
measure protocols can be recast as entanglement-based
protocols and are described by same mathematics, see
Sec. IV for elaboration.) This density operator ρ is un-
known, but the asymptotic experimental data gives linear
constraints on it, of the form

Tr(Γiρ) = γi, ∀i , (3)

where the Γi are Hermitian operators. Let S denote the
set of states that satisfy these constraints

S = {ρ ∈ H+ | Tr(Γiρ) = γi, ∀i} , (4)

where H+ is the set of positive semidefinite operators.
Also, we add the identity to the set {Γi} to enforce that
Tr(ρ) = 1, giving a total of n constraints.

The key rate calculation is an optimization problem,
since we must consider the worst-case scenario (the most
powerful eavesdropping attack) that is consistent with
the experimental data. Hence Eq. (1) involves minimiz-
ing over all ρ ∈ S. Note that the error correction term
is exactly determined by the observations, and hence we
can pull it out of the optimization in (2). Similarly, ppass
is known from the observations and is pulled into the
optimization in (2).

As discussed in Sec. IV, f(ρ) can be written as

f(ρ) = D(G(ρ)||Z(G(ρ)) , (5)

where D(σ||τ) := Tr(σ log σ)− Tr(σ log τ) is the relative
entropy, G is a completely positive (CP) map, and Z
is a completely positive trace preserving (CPTP) map,
more specifically a pinching quantum channel. (Sec. IV
discusses the meaning of G and Z, which are respectively
related to the post-selection and the key map of the QKD
protocol). Due to the joint convexity of the relative en-
tropy, the function f(ρ) is convex in ρ. Furthermore the
problem

α := min
ρ∈S

f(ρ) (6)

is a convex optimization problem since the set S is convex
(see, e.g., Ref. [19]). While efficient numerical methods
are known for such convex problems, the key rate cal-
culation is unique compared to other convex problems,
in that getting “close” to the optimal point is not good
enough. One needs a reliable lower bound on the key
rate, i.e., guaranteed security.

III. MAIN RESULT

A. Reliable lower bound

We now show how to lower bound the minimization
problem in (6). Our strategy is to break up the key rate
calculation into two steps:

• Step 1: Find an eavesdropping attack that is close
to optimal, which gives an upper bound on the key
rate.

• Step 2: Convert this upper bound to a lower bound
on the key rate.

With our approach, Step 1 does not need to be perfect
- any eavesdropping attack may be used as an input for
Step 2. However, if Step 1 returns the optimal attack,
our lower bound calculated by Step 2 will be tight. Fur-
thermore, our method for Step 2 is continuous around
the optimal attack. Thus, finding a near-optimal attack,
produces a near-optimal lower bound.

Step 1 may be solved in various ways using convex
optimization methods [19]. For concreteness, Sec. III E
presents one such method, which exploits the structure
of our problem and is relatively fast.

On the other hand, our main result is a method for
performing Step 2. We approach Step 2 via a sequence
of theorems that successively improve the reliability and
robustness of the lower bounds which they return. First,
Theorem 1 presents the conceptual foundation for our
lower bounding method. However, this theorem is stated
under a restrictive assumption that is not generally true.
Therefore, we extend our result in Theorem 3. Finally,
we improve our result once more in Theorem 4, which
addresses numerical imprecision and is directly useful for
numerical key rate calculations. Sec. IIID presents the
argument that our method yields arbitrarily tight bounds
on the key rate.

We now present our main result in its simplest concep-
tual form. To state this result, we first define the gradi-
ent of f at point ρ, whose representation in the standard
basis {|j⟩} is

∇f(ρ) :=
∑
j,k

djk|j⟩⟨k|, with djk :=
∂f(σ)

∂σjk

∣∣∣∣∣
σ=ρ

(7)

and σjk := ⟨j|σ|k⟩.

Theorem 1: Given any ρ ∈ S, if ∇f(ρ) exists, then

α ⩾ β(ρ) , (8)

where α was defined in (6) and

β(σ) := f(σ)− Tr(σT∇f(σ)) + max
y⃗∈S∗(σ)

γ⃗ · y⃗ , (9)

S∗(σ) :=

{
y⃗ ∈ Rn |

∑
i

yiΓ
T
i ⩽ ∇f(σ)

}
. (10)
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FIG. 1: Illustration of our lower-bounding method. Step 1
is any algorithm that takes an initial feasible point ρ0 and
outputs another feasible point ρ, which may or may not be
close to the optimal attack ρ∗. Note that f(ρ) provides an
upper bound on f(ρ∗) and, hence, on the key rate. Step 2
converts this into a lower bound, by solving the dual problem
of the linearization of f about point ρ. Since the linearization
undercuts the curve f and since the dual problem is a max-
imization, our lower bound is reliable even if the numerical
calculation does not reach the global optimum.

Here, the transpose T is taken in the same basis as that
used to define the gradient in (7), and γ⃗ = {γi} is the vec-
tor of expectation values from (3). Furthermore, equality
in (8) holds if f(ρ) = α, i.e., if ρ corresponds to an opti-
mal attack.

The proof is given in Appendix A. It involves lineariz-
ing the convex function f about point ρ and then trans-
forming the subsequent linearized problem to its dual
problem (see [19] for discussion of duality).

Figure 1 illustrates the basic idea of Theorem 1. The-
orem 1 takes any feasible eavesdropping attack ρ, which
gives an upper bound f(ρ) on α, and converts it into a
reliable lower bound on α. The fact that (9) involves
a maximization is crucial for the reliability of the cal-
culation. Since maximization involves approaching the
solution from below, every number that the computer
outputs is a lower bound on α, even if the computer does
not reach the global maximum.

B. A more robust bound

The assumption that ∇f exists over the entirety of S
does not necessarily hold. In particular, the gradient has
the form

[∇f(ρ)]T = G†(log G(ρ))− G†(logZ(G(ρ))) . (11)

By inspection, we see that if G(ρ) is singular, ∇f(ρ) may
not exist, and hence Theorem 1 would not apply. Ideally
we would like a bound that holds for all ρ ∈ S. Towards
this end, it is helpful to first state the following lemma,
proved in Appendix B.

Lemma 2: The gradient ∇f(ρ), defined in (7), exists as
long as ρ > 0.

The above lemma motivates the following theorem,
which is a more robust version of Theorem 1. To state
this theorem, it helps to define the notation

ρ(ϵ) := ρ+ ϵ11 (12)

for an arbitrary matrix ρ.

Theorem 3: Given any ρ ∈ S, where ρ is d × d, and
ϵ ∈ R, define ρ(ϵ) according to (12). If 0 < ϵ < 1/(de),
where e is the base of the natural logarithm, then

α ⩾ βϵ(ρ(ϵ))− δϵ (13)

where

βϵ(σ) := β(σ) + ϵTr(∇f(σ)) , (14)
δϵ := −2dϵ log2 ϵ . (15)

The proof is given in Appendix B 4. The basic idea of
Theorem 3 is that it is essentially just Theorem 1, but
applied to a slightly perturbed state ρ(ϵ) > 0. Note that
this theorem generalizes Theorem 1, since we have that

lim
ϵ→0+

βϵ(ρ(ϵ))− δϵ = β(ρ) , (16)

assuming that ∇f(ρ) exists. However, Theorem 3 is more
robust than Theorem 1, because it holds for any ρ ∈ S,
even if ∇f(ρ) does not exist.

C. Finite precision computation

Finding a lower bound with our method requires a
computer program for any nontrivial QKD protocol. The
finite precision inherent to computational methods intro-
duces errors that threaten the reliability of the calculated
lower bounds.

With this threat in mind, we identify all possible
sources of errors in evaluating Theorem 1. First, the
variables will not be precise: ρ will not exactly satisfy the
constraints, and {Γi} and {γi} will not be exact. Second,
function evaluations will not be precise: every function
evaluation introduces errors.

The aforementioned errors fall into broader categories.
Variable imprecision is implementation independent since
we can characterize the imprecision in a universal man-
ner. Function-evaluation imprecision is implementation
dependent since in general, its characterization varies
widely with the particular algorithm (particularly for
evaluating nontrivial functions such as the matrix log-
arithm appearing in our objective function). Since the
latter kind of errors depend on the implementation, a
universal treatment of them is not possible. In princi-
ple, it is possible to bound the effect of such errors for a
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particular implementation [21], although it is beyond the
scope of this article. On the other hand, we give a full
treatment of implementation-independent errors in what
follows.

From a computational perspective, it is virtually im-
possible to find an element strictly in S. Furthermore, for
many problems, the computer representation {Γ̃i} and
{γ̃i} do not equal {Γi} and {γi} by the nature of their
numerical construction. This lack of strictly constraint-
satisfying density matrices motivates the need for a re-
laxed theorem.

We show (See Appendix C 1) that both strict set mem-
bership and imprecise constraints can be described by the
inequalities

|Tr(Γ̃iρ)− γ̃i| ⩽ ϵ′ , ∀i , (17)

where ϵ′ > 0. Determining ϵ′ depends heavily on how
{Γ̃i} and {γ̃i} are constructed, so we leave out a precise
analysis. In general, given a suitable high-precision com-
puting environment, ϵ′ may be made arbitrarily small.
(For example, for our calculations in Sec. V, we choose
ϵ′ < 10−12.) The bound on the unknown constraint vio-
lations motivates the introduction of a relaxed set

Sϵ′ :=
{
ρ ∈ H+

∣∣∣|Tr(Γ̃iρ)− γ̃i| ⩽ ϵ′, ∀i
}
. (18)

So long as ϵ′ is larger than the constraint violations, the
relation S ⊆ Sϵ′ should hold (See Appendix C 1). With
this new set, we now present a relaxed version of Theo-
rem 3, with the proof given in Appendix C 3.

Theorem 4: Given any ρϵ′ ∈ Sϵ′ , where ρϵ′ is d × d,
ϵ′ > 0, and 0 < ϵ < 1/(de), define ρϵ′(ϵ) := ρϵ′ + ϵ11.
Then

α ⩾ βϵϵ′(ρϵ′(ϵ))− δϵ (19)

where δϵ was defined in (15) and

βϵϵ′(σ) := Lϵ(σ) +Mϵ′(σ) , (20)

Lϵ(σ) := f(σ)− Tr(σT∇f(σ)) + ϵTr(∇f(σ)) , (21)

Mϵ′(σ) := max
y⃗∈S∗

ϵ′ (σ)

[
(⃗̃γT + ϵ′,−⃗̃γT + ϵ′)T · y⃗

]
, (22)

S∗
ϵ′(σ) :={
y⃗ ∈ R2n |

n∑
i=1

yi(Γ̃
+
i )

T +

n∑
i=1

yi+n(Γ̃
−
i )

T ⩽ ∇f(σ)

}
,

(23)

Γ̃+
i := diag(Γ̃i, δi1, δi2, ..., δin, 0⃗

T ) , (24)

Γ̃−
i := diag(−Γ̃i, 0⃗

T , δi1, δi2, ..., δin) . (25)

Here, δij denotes the Kronecker delta and diag denotes
the block diagonalization of the set of matrices.

By noting that

lim
ϵ′→0+

βϵϵ′(σ) = βϵ(σ), (26)

one can see that Theorem 4 generalizes Theorem 3.
The idea is that Theorem 4 provides a method that is

robust to constraint violation due to numerical impreci-
sion. Hence, Theorem 4 is directly useful for numerical
key rate calculations. Although it is more complicated
than Theorems 1 and 3, Theorem 4 is what we employ in
practice for our key rate calculations. For example, the
calculations presented in Sec. V use this theorem.

D. Convergence and tightness

Theorem 4 is directly useful in key rate calculations,
and as such we discuss some of its convergence properties.

In practice, Step 1 does not return a density matrix ρ∗
that minimizes f over S. Instead it finds a matrix ρϵ′ ∈
Sϵ′ that approximately minimizes f over Sϵ′ . Hence, we
answer the natural question of how close the lower bound
produced from ρϵ′ will be to α = f(ρ∗).

Note that by introducing the positive definite state
ρϵ′(ϵ) = ρϵ′ + ϵ11, it follows from Lemma 2 that the lower
bound produced by Theorem 4 will be continous with re-
spect to its argument. Thus, if ρ∗ϵ′ minimizes f over Sϵ′

and ρϵ′ is close to ρ∗ϵ′ under some norm, it follows that
the lower bounds produced by applying Theorem 4 to ρϵ′
and ρ∗ϵ′ will be close. Concretely, we have

lim
ρϵ′→ρ∗

ϵ′
βϵϵ′(ρϵ′(ϵ))− δϵ = βϵϵ′(ρ

∗
ϵ′(ϵ))− δϵ , (27)

showing that our lower bounding method converges (i.e.
the optimal lower bound of ρ∗ϵ′ is approachable).

In Appendix D we show that the minimizer ρ∗ of f
over S and the minimizer ρ∗ϵ′ of f over Sϵ′ satisfy

lim
ϵ,ϵ′→0

βϵϵ′(ρ
∗
ϵ′(ϵ))− δϵ = f(ρ∗) . (28)

Therefore, the lower bound produced by Theorem 4 is
tight when applied to ρ∗ϵ′ .

Combining (27) and (28), it follows that the lower
bound produced by applying Theorem (4) to ρϵ′ will be
arbitrarily close to f(ρ∗) provided that ϵ, ϵ′ are small and
ρϵ′ is close to ρ∗ϵ′ . So provided a suitable computer im-
plementation, our method will produce lower bounds on
the true key rate that are arbitrarily tight.

E. Finding a near-optimal attack

Thusfar we focused on Step 2 of the key rate calcula-
tion procedure. However, Step 1 needs to be addressed
since obtaining a reasonable lower bound from Step 2
requires a ρ ∈ S that is sufficiently close to the opti-
mal solution ρ∗. Here we present an algorithm that has
proved effective in practice.

Note that in what follows we do not distinguish be-
tween exact and inexact representations of {Γi} or {γi},
nor do we distinguish between exact and approximate set
membership. The validity of this approach is justified by
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observing that Step 1 is decoupled from Step 2. Specif-
ically, we can apply Theorem 4 to any positive semidef-
inite matrix that is approximately consistent with the
constraints, and still obtain a reliable lower bound.

By applying the Gram-Schmidt process to the original
set of observables {Γi}, we obtain a set {Γ̄i} of hermitian
operators that are orthogonal under the Hilbert-Schmidt
norm. The expectation value of each of these operators
is denoted

γ̄i := ⟨Γ̄i⟩ . (29)

We extend this set to an orthonormal basis {Γ̄i} ∪ {Ωj}
for the hermitian operator space. With this basis, we
may rewrite (4) as

S =

∑
i

γ̄iΓ̄i +
∑
j

ωjΩj ∈ H+ | ω⃗ ∈ Rm

 , (30)

where m is the number of free parameters. This perspec-
tive on S divides the operator space into “fixed” and “free”
subspaces. From a practical optimization point-of-view,
the benefit of this representation is that it reduces the
original equality constrained problem (which is cumber-
some to work with) to a constrained minimization subject
to a single semidefinite constraint.

We now adapt the Frank-Wolfe method [22] to problem
(6).

Algorithm 1 Minimization algorithm for Step 1
1: Let ϵ > 0, ρ0 ∈ S and set i = 0.
2: Compute ∆ρ := argmin∆ρ Tr

[
(∆ρ)T∇f(ρi)

]
subject to

∆ρ+ ρi ∈ S.
3: If Tr

[
(∆ρ)T∇f(ρi)

]
< ϵ then STOP.

4: Find λ ∈ (0, 1) that minimizes f(ρi + λ∆ρ).
5: Set ρi+1 = ρi + λ∆ρ, i← i+ 1 and go to 2.

There are two concrete reasons why adopting the sub-
space perspective, as in (30), is useful for solving Algo-
rithm 1. First, finding a ρ0 ∈ S becomes simple. We only
need to find ω⃗ so that

ρ0 =
∑
i

γ̄iΓ̄i +
∑
j

ωjΩj ∈ H+ . (31)

Second, ∆ρ has the form

∆ρ =
∑
j

ωjΩj . (32)

Calculating ω⃗ requires solving the standard linear
semidefinite program (SDP)

ω⃗ = argmin
ω⃗

∑
j

ωjTr
[
ΩT

j ∇f(ρi)
]

(33)

subject to
∑
j

(ωjΩj) + ρi ∈ H+ . (34)

Problems of this form have been extensively studied (e.g.,
see [19]) and efficient SDP solvers are widely available.

IV. GENERAL FRAMEWORK FOR QKD
PROTOCOLS

1. Prototypical protocol

Having stated our main result in abstract form, we
now connect our result to concrete QKD protocols.
Our goal is to present a framework that applies to the
known discrete-variable (DV) QKD protocols in the liter-
ature. This includes both entanglement-based (EB) and
prepare-and-measure (PM) protocols. Examples of pro-
tocols that fall under our framework include the BB84
[23], B92 [24], SARG [3, 25], six-state [26], and decoy-
state protocols [27]. Rather than show how our approach
applies to each of these examples, we instead construct
a generic protocol that encompasses these examples. We
call this the “prototypical protocol”, shown in Fig. 2. (In
Fig. 2, the distinction between the EB and PM scenarios
is depicted by a box around the source with a dashed
outline, indicating that the source may or may not be lo-
cated inside Alice’s lab.) We will now show how to apply
our approach to this prototypical protocol.

We remark that our framework can be easily extended
to cover protocols with a central node between Alice and
Bob, such as the MDI (measurement-device independent)
[28] and the simplified trusted node [29] protocols. We
direct the reader to Ref. [18] for a discussion of this ex-
tension.

Let us now describe the basic steps involved in our
prototypical protocol:

1. In the EB scenario, Alice and Bob each receive
a quantum signal (A and B, respectively) from a
source and they measure the signal according to the
respective POVMs PA = {PA

j } and PB = {PB
j },

producing the raw data. In the PM scenario, the
same mathematical description applies (via the so-
called source-replacement scheme [30, 31]) since one
can think of Alice’s prepared states as resulting
from Alice performing a measurement PA on a reg-
ister system A.

2. Alice and Bob make a public announcement, an-
nouncing some aspect of their measurement out-
comes.

3. Alice and Bob perform post-selection based on
these announcements.

4. Alice implements a key map. The key map is
a function that maps Alice’s raw data and the
announcements to a key symbol, chosen from
{0, 1, ..., N −1} where N is the number of key sym-
bols.

5. Alice performs one-way error correction, leaking
some information to Bob, and Bob forms his key.

6. Alice performs privacy amplification, typically by
applying a random universal hash function and
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Source 

Alice Bob 

Announce 

Key 

Post-select 

Key 

Announce 

Post-select 

FIG. 2: A prototypical QKD protocol that we use to illustrate
our framework. The source sends systems A and B to Alice
and Bob, respectively. The dashed line around the source in-
dicates that it may or may not be inside of Alice’s laboratory,
respectively treating the PM and EB scenarios. Alice and Bob
respectively measure POVMs PA and PB . Then they pub-
licly announce some information related to their measurement
outcomes. These announcements are used to perform post-
selection, where some announcement outcomes are discarded.
Alice then implements a key map that maps her information
(raw data + announcements) to a key variable. Finally, Alice
leaks some information (about the result of the key map) to
Bob for error correction purposes, and then Bob forms his
key.

then communicating the choice of hash function to
Bob.

2. Mathematical model for prototypical protocol

The quantum state shared by Alice and Bob (prior to
their measurements) can be written as ρAB . To be as
pessimistic as possible, we assume that Eve possesses a
purification of ρAB, which we denote as system E. In the
following discussion of the protocol, we will note that
Eve obtains access to additional systems due to public
announcements made by Alice and Bob. (In total, by
the end of the protocol, Eve will have access to EÃB̃

where Ã and B̃ are respectively the registers that store
Alice’s and Bob’s public announcements.)

Consider the experimental constraints on the state
ρAB . These constraints have the form:

Tr((PA
j ⊗ PB

k )ρAB) = pjk . (35)

For prepare-and-measure (PM) protocols, we add addi-
tional constraints, as follows. We employ the source-
replacement scheme [30, 31], which treats system A as
a register that stores the information about which state
Alice prepared. This corresponds to Alice preparing the
bipartite state

|ψ⟩AA′ =
∑
i

√
pi|i⟩A|ϕi⟩A′ (36)

where {|ϕi⟩} are the signal states and {pi} are their as-
sociated probabilities. Eve’s attack maps system A′ to
system B, producing the state ρAB . On the other hand,
system A is inaccessible to Eve, and hence

ρA = TrB(ρAB) = TrA′(|ψ⟩⟨ψ|AA′) (37)

is fixed, independent of Eve’s attack. To fix ρA we add
in constraints of the form

Tr((Θj ⊗ 11B)ρAB) = θj (38)

where {Θj} is a set of tomographically complete observ-
ables on A. Hence, (35) and (38) together represent the
constraints that Alice and Bob have on their state.

Step 2 of the above protocol involves Alice and Bob
each making an announcement based on their measure-
ment results. In this case, it is helpful to group to-
gether the POVM elements into sets associated with par-
ticular announcements. Let us write Alice’s POVM as
PA = {PA

j } = {PA
(a,αa)

} and Bob’s POVM as PB =

{PB
k } = {PB

(b,βb)
}. Here the first index denotes the an-

nouncement, and the second index denotes a particular
element associated with that announcement. Bob’s an-
nouncement is given by a quantum channel with Kraus
operators

KB
b =

∑
βb

√
PB
(b,βb)

⊗ |b⟩B̃ ⊗ |βb⟩B . (39)

We remark that KB
b expands the Hilbert space by intro-

ducing the registers B̃ and B, which is why the operators
on these subsystems appear as kets in (39). Similarly, Al-
ice’s announcement is given by a quantum channel with
Kraus operators

KA
a =

∑
αa

√
PA
(a,αa)

⊗ |a⟩Ã ⊗ |αa⟩A . (40)

Here, Ã and B̃ are registers that store Alice’s and Bob’s
announcements, respectively. Also, A and B are registers
that store Alice’s and Bob’s measurement outcomes, for
a given announcement. So, the state after making these
announcements becomes

ρ
(2)

AÃABB̃B
= A(ρAB) (41)

=
∑
a,b

(KA
a ⊗KB

b )ρAB(K
A
a ⊗KB

b )† , (42)

where A is a CPTP map. We remark that the form of
(41) is such that Ã and B̃ are classical registers, meaning
that the purifying system has a copy of the registers.
This is the way one models a public announcement.

Step 3 is post-selection. Here, Alice and Bob select
some announcements to keep and some to discard. Let
A be the set of all announcements that are kept. Then
define the projector

Π =
∑

(a,b)∈A

|a⟩⟨a|Ã ⊗ |b⟩⟨b|B̃ , (43)

with identity acting on the other systems. The post-
selection is modeled by projecting with this projector to
obtain the state

ρ
(3)

AÃABB̃B
=

Πρ
(2)

AÃABB̃B
Π

ppass
. (44)
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where ppass = Tr(ρ̃AÃABB̃BΠ).
In step 4, Alice’s chooses a key map. A key map is

a function g whose arguments include the outcome of
Alice’s measurements (a, αa) and Bob’s announcement
b. The function outputs a value in {0, 1, ..., N −1} where
N is the number of key symbols. Hence, we write the key
map as the function g(a, αa, b). We define an isometry
V that stores the key information in a register system R,
as follows

V =
∑

a,αa,b

|g(a, αa, b)⟩R ⊗ |a⟩⟨a|Ã ⊗ |αa⟩⟨αa|A ⊗ |b⟩⟨b|B̃ .

(45)

We first act with this isometry on the state ρ(3) in (44),

ρ
(4)

RAÃABB̃B
= V ρ

(3)

AÃABB̃B
V † , (46)

which stores the key information in the standard basis
{|j⟩R} on R. Then we decohere R in this basis, which
turns R into a classical register denoted ZR, giving the
final state

ρ
(5)

ZRAÃABB̃B
= Z

(
ρ
(4)

RAÃABB̃B

)
, (47)

where Z is a pinching quantum channel, whose action is
given by Z(σ) =

∑
j(|j⟩⟨j|R ⊗ 11)σ(|j⟩⟨j|R ⊗ 11).

3. Key rate

Finally, Alice performs error correction, which gives
leakEC

obs number of bits about the key map results to Eve,
followed by privacy amplification. This gives the follow-
ing formula for the key rate [20]:

K = ppass

[
H(ZR|EÃB̃)ρ(5) − leakEC

obs

]
. (48)

Here, H(A|B)ρ = H(ρAB) − H(ρB) denotes the condi-
tional von Neumann entropy with H(σ) = −Tr(σ log σ).
As noted above, E is be a purifying system of ρAB .

More precisely, the expression in (48) must be min-
imized over all density operators ρAB that satisfy the
constraints in (35) and (38). Hence we write:

K = min
ρAB∈S

(
ppassH(ZR|EÃB̃)ρ(5)

)
− ppassleakEC

obs ,

(49)

where S has the general form in (4), with the constraints
given by (35) and (38).

Having now expressed the key rate in explicit form, we
can now relate (49) back to the discussion in Sec. II. This
involves simplifying the notation. Namely, for the con-
straints in (35) and (38), we rewrite them as Tr(Γiρ) =
γi, as in (3). Note that we drop the subsystem labels on
the state ρ = ρAB . Finally, we write the optimization
problem in (49) as

α = min
ρ∈S

f(ρ) , (50)

where

f(ρ) = ppass ·H(ZR|EÃB̃)ρ(5) (51)

= ppass ·D
(
ρ
(4)

RAÃABB̃B
||ρ(5)

ZRAÃABB̃B

)
(52)

= D (G(ρAB)||Z(G(ρAB))) . (53)

Note that (52) removes the dependence on Eve’s system
E and is derived using Theorem 1 from [32]. Equation
(53) is derived from the previous line using the property
D(cσ||cτ) = cD(σ||τ) for any constant c > 0. Further-
more we define G such that its action on an operator σ
is given by

G(σ) = V ΠA(σ) Π V † . (54)

Note that (53) has the same form as Eq. (5). In sum-
mary, to apply our numerical approach to a given proto-
col, one formulates G via (54) and the constraints via (35)
and (38). With these objects defined, one then applies
our numerical method outlined in Sec. III.

V. EXAMPLES

In this section we consider three practically important
scenarios that show the power of our approach. In par-
ticular, we consider (1) the BB84 protocol with detector
efficiency mismatch, (2) the Trojan horse attack on the
BB84 protocol, and (3) the BB84 protocol with phase-
coherent signal states. Each of these three scenarios in-
volves a BB84-style protocol but with some “imperfec-
tion” accounted for (detector inefficiency, existence of
a side channel, and lack of phase randomization). For
each scenario, our approach yields significantly higher
key rates than those previously obtained in the litera-
ture. We remark that the robustness of our numerical
approach could allow us to investigate all three imper-
fections in a single protocol, although for simplicity we
consider them separately.

For illustration purposes, for the following examples we
assume that error correction is performed at the Shannon
limit. This means that the error correction term in (49)
can be written as a conditional entropy,

leakEC
obs = H(ZR|ZBÃB̃)ρ(5) , (55)

with the state ρ(5) defined in (47). Here, ZB can be
viewed as the classical register that one would obtain
from measuring in the standard basis on B.

For each example, further details about the constraints
used in our calculations can be found in Appendix E.

A. Efficiency mismatch

Consider a polarization-encoded BB84 protocol, where
Bob actively choses his detection basis setting. In this
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FIG. 3: Key rate for the BB84 protocol with detector effi-
ciency mismatch. Curves are shown for three values of de-
polarizing probability p (0, 0.05, 0.1). The x-axis is the effi-
ciency of the least efficient detector, with the other detector’s
efficiency being set to one.

case, Bob’s measurement involves two detectors, D1 and
D2, that are associated with the two polarization states
for a given basis.

In practice, it is likely that D1 and D2 have different
efficiencies, commonly referred to as efficiency mismatch.
This mismatch can be further enhanced (by Eve) by ma-
nipulating the spatial mode of the incoming light [33].
When efficiency mismatch is large enough, successful
hacking strategies on QKD systems have been demon-
strated [34]. Furthermore, even with a small amount of
efficiency mismatch, the security analysis of QKD be-
comes difficult to perform.

This motivates the application of our numerical ap-
proach the case of detector efficiency mismatch. For sim-
plicity, we consider single-photon signal states, and we
assume that no multiple photons arrive at Bob’s measure-
ment apparatus. (Our numerical approach can handle
multi-photon signals and multi-photon detection events;
however, we leave a detailed discussion of the general
case for future work.) The single-photon case was previ-
ously treated analytically by Fung et al. [17], and hence
it provides an opportunity to compare our numerics to
the literature.

To further simplify the analysis, we assume one of
Bob’s detectors is perfect while the other detector has
an efficiency η. This allows us to plot the key rate as a
function of η, as shown in Fig. 3, for various depolariz-
ing noise levels p. The plot shows that our new numeri-
cal method outperforms our previous numerical method
based on the dual problem [18], which in turn outper-
forms the analytical method from Ref. [17].
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FIG. 4: Key rate vs error rate for the single-photon BB84
protocol under a Trojan-horse attack. The key rate is plotted
for different values of µout. Our numerical method improves
on our previous approach in Ref. [18], which in turn gives
higher key rates than the analytical method of Ref. [14].

B. Trojan-horse attack

Consider the phase-encoded BB84 protocol. Here, Al-
ice’s light source produces a pulse that passes through an
interferometer, one arm of which applies a variable phase
θ chosen from the set {0, π/2, π, 3π/2} to encode the in-
formation. Bob decodes this phase information with an
interferometer in his lab.

There is a simple hacking attack on this protocol that
exploits a side channel in Alice’s encoder (i.e., a channel
by which Eve can obtain additional information, beyond
the direct channel from Alice to Bob). The attack in-
volves Eve sending a bright pulse of light into Alice’s lab
[12]. Some fraction of this pulse reaches Alice’s phase
encoder and is encoded with the same information that
Alice is attempting to send to Bob. A portion of this
light is reflected back to Eve, who can then decode some
of the phase information, potentially compromising the
protocol’s security. This is called the Trojan-horse attack
(THA) [13], since it involves a “malicious gift” from Eve.

For simplicity, let us restrict our attention here to
the case where Alice’s light source outputs only a sin-
gle photon per signal. Following the approach of Lu-
camarini et al. [14], we describe Eve’s input pulse and
back-reflected pulse as coherent states denoted by |√µin⟩
and |eiθ√µout⟩, respectively. Here, θ stores Alice’s phase
encoding setting, and the input and output intensities
typically satisfy µout ≪ µin. The signal states emerging
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FIG. 5: Key rate versus signal-state amplitude α for three
values of transmission probability - η = 1, 0.8, 0.6 - for the
Huttner et al. [15] protocol.

from Alice’s source are:

|ϕx+⟩ = |x+⟩S ⊗ |+√
µout⟩S′ (56)

|ϕx−⟩ = |x−⟩S ⊗ | −√
µout⟩S′ (57)

|ϕy+⟩ = |y+⟩S ⊗ |+ i
√
µout⟩S′ (58)

|ϕy−⟩ = |y−⟩S ⊗ | − i
√
µout⟩S′ . (59)

Here, |x±⟩ := (1/
√
2)(|z+⟩ ± |z−⟩) and analogously for

|y±⟩, where |z+⟩ = |1⟩L|0⟩S , |z−⟩ = |0⟩L|1⟩S , and |n⟩L
(|n⟩S) is the n-photon state of the long (short) arm of
the interferometer.

Figure 4 shows the results of our numerics for the THA.
Here we plot key rate versus error rate (assuming the x
and y error rates are identical, for simplicity) for various
values of µout. The plot shows that our new numerical
method gives higher key rates than both the analytical
method from Ref. [14] as well as the numerical method
from Ref. [18].

C. BB84 protocol with phase-coherent signal states

Here we consider a protocol proposed by Huttner et
al. [15] and analyzed by Lo and Preskill [16]. This is a
phase-encoded BB84 protocol, but using coherent states
instead of single-photon states. This is quite practical,
since one can use attenuated laser pulses from mode-
locked lasers to generate these signal states. In addition
the protocol is practical because the experimenter does
not need to do phase randomization. So it is worth in-
vestigating the key rate of this protocol.

The signal states prepared by Alice are [16]

|ϕz+⟩ = |+ α⟩S ⊗ |α⟩S′ (60)
|ϕz−⟩ = | − α⟩S ⊗ |α⟩S′ (61)
|ϕx+⟩ = |+ iα⟩S ⊗ |α⟩S′ (62)
|ϕx−⟩ = | − iα⟩S ⊗ |α⟩S′ (63)

where α is the amplitude of the coherent state, S is the
signal mode and S′ is the reference mode. When Bob re-
ceives the signal, he performs a polarization measurement
(in one of two complementary bases), discarding no-click
events, and assigning a random bit value to double-click
events.

Lo and Preskill [16] gave an analytical lower bound on
the key rate for this protocol, as a function of transmis-
sion probability η and amplitude α. Their theoretical
curves are shown as dotted lines in Fig. 5, for several
values of η. In the same plot, we show the result of our
numerical optimization as solid lines, with the key rates
obtained from the method in Ref. [18] shown as dashed-
dotted lines. Interestingly our numerics give higher key
rates than the previous literature over the entire param-
eter range. This is an important result due to the prac-
ticality of this protocol.

VI. CONCLUSIONS

In conclusion, we presented a new numerical approach
for calculating key rates for QKD. For concreteness, we
name our approach the “reliable primal method” or the
“reliable primal problem”. As discussed in Sec. III, Step 1
of our method is simply the primal optimization prob-
lem. Step 2 of our method converts the output of Step 1
(a nearly optimal eavesdropping attack) into a reliable
lower bound on the key rate. We presented an efficient
method for Step 1 in Sec. III E. Our main contribution is
a method for Step 2, which is presented in Theorems 1,
3, and 4.

Reliability is the most important issue with numeri-
cal key rate calculations, since key rates must come with
a security guarantee. In this work, we highlighted the
various issues associated with numerical key rate calcu-
lations, such as constraint violation and inexact variable
storage by computers. Furthermore, we showed how to
address these issues. Our most robust result, Theorem 4,
allows one to lower bound the key rate despite numerical
imprecision.

We discussed that our method is arbitrarily tight in
Sec III D. This allowed us to make significant improve-
ments over previous literature key rates for three inter-
esting examples in Sec. V. Furthermore, the tightness of
our approach implies that the solid curves that we plotted
in Figs. 3, 4, and 5 are essentially unbeatable, i.e., they
cannot be improved upon. Eliminating looseness from
key rate calculations is a major advance for the field of
QKD research.
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Future applications of our work include investigating
device imperfections, side channels, multi-photon detec-
tion events, decoy-state protocols with partial phase ran-
domization, measurement-device independent protocols,
differential-phase shift protocols, and coherent one-way
protocols. Perhaps more importantly, our approach can
allow researchers to explore and evaluate novel protocol
ideas that have yet to be discovered.

As noted in the Introduction, our group released a
user-friendly software for key rate calculations based on
the dual problem from Ref. [18]. Interestingly, our reli-
able primal method presented here improves on the ap-
proach of Ref. [18] in terms of both speed and tightness.
Therefore, we plan to improve our publicly-available soft-
ware in the future by incorporating the reliable primal

method. We believe this software has the potential to be
used throughout the QKD community, both in industry
and academia.

Finally, we hope to extend our approach to finite-key
analysis [9, 35] in the near future.
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Appendix A: Proof of Theorem 1

1. Standard form for semidefinite programs

To prove Theorem 1, we will make use of the so-called standard form for semidefinite programs (e.g., see page 265
of [19]), given as follows:

Primal Problem Dual Problem (A1)
maximize ⟨A,X⟩ minimize γ⃗ · y⃗ (A2)
subject to: subject to: (A3)

⟨B1, X⟩ = γ1 y⃗ · B⃗ ⩾ A (A4)
... y⃗ ∈ Rn (A5)

⟨Bm, X⟩ = γm (A6)
X ⩾ 0 (A7)

Here, the inner product is of the Hilbert-Schmidt form, ⟨A,B⟩ := Tr(A†B), and the vector notation a⃗ · b⃗ is shorthand
for

∑m
j=1 ajbj .

2. Inequality in (8)

In what follows, we first prove the inequality in (8), and in the next subsection we establish the equality condition.
For some matrix σ, let σ⃗ := vec(σ) denote the vectorization obtained by stacking the columns of σ. For two matrices

σ and τ , note that the inner product between their vectorizations can be written as

σ⃗ · τ⃗ = Tr(σT τ) , (A8)

where T is the transpose taken in the basis used to define the vectorization.
Now consider the gradient matrix ∇f(ρ) defined in (7) and its vectorization ∇⃗f(ρ). Note that the quantity

g(ρ, σ) := (σ⃗ − ρ⃗) · ∇⃗f(ρ) (A9)

= Tr
[
(σ − ρ)T∇f(ρ)

]
(A10)

quantifies how much the function f changes whenever one moves from point ρ to point σ. [Note that Eq. (A10)
rewrote g(ρ, σ) in matrix notation, where T is the transpose in the same basis that is used to represent the gradient
matrix.] More precisely, g(ρ, σ) quantifies how much the linearization Lρ of f changes, where Lρ is the linearization
about point ρ. Specifically, the linearization is given by

Lρ(σ) = f(ρ) + g(ρ, σ) . (A11)
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Since f is a convex, differentiable function over a convex set S, the linearization Lρ always lies below the curve f
(e.g. page 69 of [19]). Hence, for any two points ρ, σ ∈ S we have

f(σ)− f(ρ) ⩾ g(ρ, σ) . (A12)

Now let ρ∗ ∈ S minimize f over S. Then

f(ρ∗) ⩾ f(ρ) + Tr((ρ∗ − ρ)T∇f(ρ)) (A13)

⩾ f(ρ) + min
σ∈S

[
Tr((σ − ρ)T∇f(ρ))

]
(A14)

= f(ρ)− Tr(ρT∇f(ρ)) + min
σ∈S

Tr(σT∇f(ρ)) , (A15)

where (A14) exploits the fact that ρ∗ ∈ S. Hence finding a lower bound on α reduces to the minimization problem

min
σ∈S

Tr(σT∇f(ρ)). (A16)

This is a linear semidefinite program (SDP) and we may apply duality theory to obtain the dual SDP. In particular,
our problem is essential the standard SDP form given in Sec. A 1, which gives the following dual problem

max
y⃗ ∈S∗(ρ)

γ⃗ · y⃗ , (A17)

where

S = {ρ ∈ H+ | Tr(Γiρ) = γi,∀i} , (A18)

S∗(σ) =

{
y⃗ ∈ Rn |

∑
i

yiΓ
T
i ⩽ ∇f(σ)

}
. (A19)

Weak duality implies that

min
σ∈S

Tr(σT∇f(ρ)) ⩾ max
y⃗ ∈S∗(ρ)

γ⃗ · y⃗ . (A20)

Inserting (A20) into (A15) gives the desired lower bound in (8).

3. Equality in (8)

With the inequality in Theorem 1 proven, we now turn to establishing equality in (8) if f(ρ) = f(ρ∗).
First, consider the inequality in (A20). Slater’s condition provides a sufficient criteria for strong duality to hold

(e.g. page 265 of [19]).
In general, Slater’s condition only applies to the primal problem rather than the dual. However, in the case of a

semidefinite program, we remark that the dual (A16) and primal (A17) problem are in direct correspondence. Hence,
we can apply Slater’s conditon with the primal and dual problem interchanged.

To satisfy the condition it is adequate to show that S ̸= ∅ and there exists y⃗ ∈ Rn such that
∑

i yiΓ
T
i < ∇f(ρ).

Since the set of constraints {Γi} correspond to a valid density matrix, it immediately follows that S ̸= ∅. Since
density matrices are constrained to have trace one, without loss of generality we may take Γ1 = 11 and γ1 = 1. Thus,
if λmin is the smallest eigenvalue of ∇f(ρ), it follows that (λmin − 1)ΓT

1 < ∇f(ρ). So y⃗ = (λmin − 1, 0, ..., 0)T satisfies∑
i yiΓ

T
i < ∇f(ρ). With Slater’s condition satisfied, strong duality holds and

min
σ∈S

Tr(σT∇f(ρ)) = max
y⃗ ∈S∗(ρ)

γ⃗ · y⃗ . (A21)

We now show that if f(ρ) = f(ρ∗) then equality in (8) holds. Suppose that f(ρ) = f(ρ∗), then (A15) yields

min
σ∈S

Tr((σ − ρ)T∇f(ρ)) ⩽ 0 . (A22)

Next, we state a lemma that provides a bound in the opposite direction of (A22).
Lemma 5: For a point ρ that minimizes f over S,

min
σ∈S

Tr((σ − ρ)T∇f(ρ)) ⩾ 0 . (A23)
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Proof. The Karush-Kuhn-Tucker (KKT) conditions (e.g. page 243 of [19]) provide necessary conditions for the op-
timality of ρ. For our problem they say that if ρ is optimal, then there exists a pair (λ⃗, Z) ∈ Rn × Hd×d such
that

∇f(ρ) +
∑
i

λiΓi
T − Z = 0 , (A24)

Tr(ZT ρ) = 0 , (A25)
Z ⩾ 0 , (A26)

where we have differentiated our constraints to get the latter two terms in (A24). Let σ ∈ S then

Tr((σ − ρ)T∇f(ρ)) = Tr((σ − ρ)T (−
∑
i

λiΓi
T + Z)) (A27)

=
∑
i

λiTr(Γiρ)−
∑
i

λiTr(Γiσ) + Tr(ZTσ)− Tr(ZT ρ) (A28)

= Tr(ZTσ) , (A29)

where we have used the definition of S and (A25) in the last equality. Since σ and ZT are both positive semidefinite
it follows that the trace of their product is nonnegative. Hence,

Tr((σ − ρ)T∇f(ρ)) ⩾ 0 , (A30)

and since σ is arbitrary, the desired result follows.

Combining (A22) and (A23) we must have

min
σ∈S

Tr((σ − ρ)T∇f(ρ)) = 0 . (A31)

Consequently,

f(ρ∗) = f(ρ) + min
σ∈S

Tr((σ − ρ)T∇f(ρ)) (A32)

= f(ρ)− Tr(ρT∇f(ρ)) + max
y⃗∈S∗(ρ)

γ⃗ · y⃗ (A33)

= β(ρ) . (A34)

Appendix B: Existence of the gradient for ρ > 0

1. Some useful lemmas

Here we show that if ρ > 0, i.e., if ρ is full rank, then the gradient given by Eq. (11) is well defined. To justify this
statement, we first state several useful lemmas.
Lemma 6: Let E be a quantum channel, and let Π denote the projector onto the support of E(11). Then for any
operator X,

E(X) = ΠE(X)Π (B1)

Proof. Let P be a positive semidefinite operator such that 0 ⩽ P ⩽ 11, then E(P ) ⩽ E(11). This implies that
supp(E(P )) ⊆ supp(E(11)). In turn this implies that

E(P ) = ΠE(P )Π. (B2)

Note that one can multiply the above equation by any positive number p and it still holds. Hence defining Q = pP
we obtain

E(Q) = ΠE(Q)Π. (B3)

for any Q ⩾ 0. Since the positive operators form a basis for the operator space, any operator X can be written as
a linear combination of positive operators. Hence, taking linear combinations of equations of the form of (B3), we
arrive at the desired result (B1).
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Lemma 7: Let E be a quantum channel, and let Π denote the projector onto the support of E(11). Then for any
operator Y ,

E†(Y ) = E†(ΠYΠ) (B4)

where E† is the adjoint of E .

Proof. Let ⟨A,B⟩ = Tr(A†B) be the Hilbert-Schmidt inner product. Consider some operator X. Then

⟨E†(Y ), X⟩ = ⟨Y, E(X)⟩ = ⟨Y,ΠE(X)Π⟩ = ⟨ΠYΠ, E(X)⟩ = ⟨E†(ΠYΠ), X⟩, (B5)

where we invoked (B1). Since X is arbitrary, we have E†(Y ) = E†(ΠYΠ).

Lemma 8: Let E be a quantum channel, then for any full-rank density matrix ρ > 0,

supp(E(ρ)) = supp(E(11)) . (B6)

Proof. The fact that ρ > 0 implies that there exists an ϵ > 0 such that

ϵ11 ⩽ ρ ⩽ 11 , (B7)

where the second inequality follows from ρ being a density matrix. Since E is completely positive,

ϵE(11) ⩽ E(ρ) ⩽ E(11) , (B8)

and it is clear that (B6) follows from this equation.

Lemma 9: Let E be a pinching quantum channel, i.e., one whose action is given by E(ρ) =
∑

j ΠjρΠj where the Πj

are orthogonal projectors such that
∑

j Πj = 11. Then for any ρ ⩾ 0,

supp(ρ) ⊆ supp(E(ρ)) . (B9)

Proof. One way to see this is to consider the von Neumann entropy

H(E(ρ)) = −Tr [E(ρ) log E(ρ)] (B10)
= −Tr [ρE(log E(ρ))] (B11)
= −Tr [ρ log E(ρ)] , (B12)

where (B12) follows because log E(ρ) is already pinched, and so pinching it again with E has no effect. The quantity in
(B12) would be ill-defined if and only if ρ is not contained inside supp(E(ρ)). In contrast, the von Neumann entropy
in (B10) is a well-behaved function that does not blow up under any circumstances. Since the two quantities are
equal, this must mean that ρ is contained inside supp(E(ρ)).

2. Proof of Lemma 2

As noted in (11), the gradient has the form

[∇f(ρ)]T = G†(log G(ρ))− G†(logZ(G(ρ))) . (B13)

The quantities G(ρ) and Z(G(ρ)) may be singular and hence the conventional matrix logarithm is ill-defined. We
remedy the situation by redefining the matrix logarithm with an extension that holds even when G(ρ) or Z(G(ρ)) are
singular.

We are only interested in the case where the argument of the matrix logarithm σ is hermitian and hence, we may
diagonalize it as σ = P−1DP where P is an orthogonal matrix and D = diag(λ1, λ2, . . . , λn). A conventional way of
evaluating the matrix logarithm for hermitian σ > 0 is

log σ = P−1(logD)P = P−1diag(lnλ1, lnλ2, . . . , lnλn)P (B14)

We extend this definition of the matrix logarithm to all σ ⩾ 0 by redefining it as

log σ := P−1diag(l̃nλ1, l̃nλ2, . . . , l̃nλn)P (B15)
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where l̃n : R⩾0 → R is defined by

l̃n(x) :=

{
ln(x) , x > 0

0 , x = 0
(B16)

With our new definition of the matrix logarithm, the gradient is well defined for all ρ > 0 since any zero eigenvalues
of G(ρ) and Z(G(ρ)) are mapped to 0 by l̃n. In fact, mapping the zero eigenvalues to any real number by l̃n will prove
a valid extension.

Note that the new definition of the gradient is only different from the standard definition when G(ρ) or Z(G(ρ))
has a zero eigenvalue, so we consider those two cases.

Consider the first term in (B13). The zero eigenvalues in G(ρ) correspond to eigenvectors outside the support of
G by definition. Let λi = 0 be once such eigenvalue with corresponding eigenvector |λi⟩. Suppose for a moment
that λi ̸= 0. From our definition of the matrix logarithm, it is apparent that log G(ρ) has an eigenvalue lnλi with
corresponding eigenvector |λi⟩. By Lemma 7, it follows that this subspace is anhilated when G†

is applied to log G(ρ).
Hence the value assigned to lnλi is irrelevant so long as it is a number. Now consider λi = 0. Our previous discussion
implies that for all λi ̸= 0 the associated subspace is destroyed. We only run into trouble when λi = 0.To repair
the situation, we define l̃n(0) = 0 since the subspace plays no role in the value of the gradient. This is precisely our
extension of the first term.

Likewise, combining Lemma 7 and 9 yields an identical line of reasoning that justifies the extension of the second
term.

3. Continuity

Here we state that the objective function f(ρ) is continuous, which will be a useful lemma needed for our proof of
Theorem 3. First we state the following lemma for the trace distance (or trace norm).
Lemma 10: Let ρ and σ be (normalized) density matrices. Let E be a completely positive trace non-increasing
(CPTNI) map. Then

∥ρ− σ∥1 ⩾ ∥E(ρ)− E(σ)∥1 , (B17)

where ∥A∥1 = Tr
√
A†A is the trace norm.

The proof is a straightforward extension of the proof for CPTP maps found in [36].
Next we state a lemma, known as Fannes’ inequality, that entropy is continuous, whose proof can also be found

in [36].
Lemma 11: Let ρ ⩾ 0 and σ ⩾ 0 be d× d matrices, such that ∥ρ− σ∥1 ⩽ ϵ ⩽ 1/e. Then

|H(ρ)−H(σ)| ⩽ ϵ log(d/ϵ) . (B18)

Note that the right-hand side of (B18) goes to zero as ϵ → 0. Finally we state the continuity of our objective
function.
Lemma 12: Let ρ and σ be (normalized) density matrices such that ∥ρ − σ∥1 ⩽ ϵ ⩽ 1/e. Let f(ρ) be defined as in
(5),

f(ρ) = D(G(ρ)||Z(G(ρ)) , (B19)

where G is a completely positive map and Z is a pinching quantum channel. Suppose G(ρ) and G(σ) are d× d. Then

|f(ρ)− f(σ)| ⩽ 2ϵ log(d/ϵ) . (B20)

Proof. It is straightforward to show that

f(ρ) = H [Z(G(ρ))]−H [G(ρ)] . (B21)

Next note that Lemma 10 implies that ∥G(ρ)− G(σ)∥1 ⩽ ϵ and ∥Z(G(ρ))−Z(G(σ))∥1 ⩽ ϵ. So from (B21) we have

|f(ρ)− f(σ)| = |H [Z(G(ρ))]−H [G(ρ)]−H [Z(G(σ))] +H [G(σ)]| (B22)
⩽ |H [Z(G(ρ))]−H [Z(G(σ))] |+ |H [G(ρ)]−H [G(σ)] | (B23)
⩽ ϵ log(d/ϵ) + ϵ log(d/ϵ) (B24)
⩽ 2ϵ log(d/ϵ) , (B25)

where (B24) invoked Lemma 11.
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4. Proof of Theorem 3

We first define a perturbed optimization problem. Let ϵ ∈ R such that 0 < ϵ < 1/(de), then consider

α(ϵ) := min
ρ∈S(ϵ)

f(ρ) (B26)

where

S(ϵ) := {ρ ⩾ ϵ11 | Tr(Γiρ) = γ̂i, ∀i} , (B27)
γ̂i := γi + ϵTr(Γi) . (B28)

There is a natural bijection M : S → S(ϵ) where

M(ρ) = ρ+ ϵ11 . (B29)

Note that this bijection is operationally identical to defining ρ(ϵ) := ρ+ ϵ11, as we did in Theorem 3.
Let ρ(ϵ) ∈ S(ϵ). If ρ(ϵ)∗ minimizes f over S(ϵ) then we can apply the proof of Theorem 1 to obtain

f(ρ(ϵ)∗) ⩾ f(ρ(ϵ))− Tr
[
ρ(ϵ)T∇f(ρ(ϵ))

]
+ min

σ∈S(ϵ)
Tr

[
σT∇f(ρ(ϵ))

]
. (B30)

The optimization problem in (B30) is

min
σ∈H

Tr
[
σT∇f(ρ(ϵ))

]
(B31)

s.t.Tr(Γiσ) = γ̂i (B32)
σ ⩾ ϵ11 (B33)

where H denotes the set of hermitian d × d matrices. Since M is a bijection, we can define σ̃ = σ − ϵ11 and rewrite
the optimization problem as

min
σ̃∈H

Tr
[
(σ̃ + ϵ11)T∇f(ρ(ϵ))

]
(B34)

s.t.Tr [Γi(σ̃ + ϵ11)] = γ̂i (B35)
σ̃ + ϵ11 ⩾ ϵ11 (B36)

Then simplify to get

min
σ̃∈H

Tr
[
σ̃T∇f(ρ(ϵ))

]
+ ϵTr [∇f(ρ(ϵ))] (B37)

s.t.Tr(Γiσ̃) = γi (B38)
σ̃ ⩾ 0 (B39)

The first term in (B37) is identical to the optimization problem in Theorem 1. The latter term is a constant, so it
follows that

f(ρ(ϵ)∗) ⩾ β(ρ(ϵ)) + ϵTr(∇f(ρ(ϵ))) (B40)

where equality holds if f(ρ(ϵ)) = f(ρ(ϵ)∗).
Next we establish a relationship between f(ρ∗) and f(ρ(ϵ)∗). We can apply Lemma 12 to obtain

|f(Mϵ(ρ))− f(ρ)| ⩽ −2dϵ log2 ϵ = δϵ (B41)

for any ρ ∈ S. If ρ∗ minimizes f over S, it follows that

f(ρ∗) ⩾ f(M(ρ∗))− δϵ . (B42)

Thus, if ρ(ϵ)∗ minimizes f over S(ϵ) then

f(ρ∗) ⩾ f(ρ(ϵ)∗)− δϵ . (B43)

Hence we have

α ⩾ f(ρ(ϵ)∗)− δϵ . (B44)

For any ρ(ϵ) ∈ S(ϵ), we can apply (B40) to obtain

α ⩾ β(ρ(ϵ)) + ϵTr(∇f(ρ(ϵ)))− δϵ . (B45)
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Appendix C: Computational implementation of the lower-bounding method

1. Handling imprecise representations

As noted in the main text (Sec. III C), it is impossible to provide exact floating-point representations of {Γi}
and {γi}. We address this impossibility by defining approximate representations, which we denote by {Γ̃i} and {γ̃i}
respectively. We relate the approximate and exact representations by

Γ̃i = Γi + δΓi and γ̃i = γi + δγi , (C1)

where

||δΓi||HS < ϵ1 and |δγi| < ϵ2 , (C2)

for all i. Here, the Hilbert-Schmidt norm is defined by ||A||HS :=
√

Tr(A†A). Determining the constants ϵ1 and ϵ2
is rather technical and depends heavily on how the approximate observables and expectation values are computed.
However, if the mantissa of the underlying representation is increased in length (or arbitrary precision arithmetic
is used) and appropriate numerical algorithms are applied, the approximate representations will become arbitrarily
accuracte. Hence, ϵ1 and ϵ2 may be made as small as needed.

We can define the quantity

ϵrep = ϵ1 + ϵ2 (C3)

that measures our overall variable uncertainty. We now prove a lemma that motivates our treatment of the imprecision.
Lemma 13: Let ρ ∈ S and let the definitions in (C1), (C2), and (C3) hold. Then

|Tr(Γ̃iρ)− γ̃i| < ϵrep . (C4)

Proof. We can apply the triangle inequality, the Cauchy-Schwarz inequality and the fact that ρ is a density matrix to
obtain

|Tr(Γ̃iρ)− γ̃i| = |Tr(δΓiρ)− δγi| (C5)
⩽ |Tr(δΓiρ)|+ |δγi| (C6)
⩽ ||δΓi||HS||ρ||HS + |δγi| (C7)
⩽ ||δΓi||HS + |δγi| (C8)
< ϵ1 + ϵ2 . (C9)

2. Handling imprecise solvers

Up to this point in our error analysis, we have neglected the fact that no numerical solver is exact. In reality, the
matrix ρ̃ returned by the solver may not be positive semidefinite or satisfy the approximate constraints defined by
{Γ̃i} and {γ̃i}. In what follows we present a method for addressing this situation.

Let λmin denote the smallest eigenvalue of ρ̃, then

ρ̃′ :=

{
ρ̃− λmin11 , λmin < 0

ρ̃ , otherwise
(C10)

is positive semidefinite. Let ϵsol be a positive real number such that

|Tr(Γ̃iρ̃
′)− γ̃i| < ϵsol . (C11)

The quantity ϵsol describes how close ρ̃′ is to satisfying the approximate constraints provided that it is chosen to be
as small as possible. The closer ρ̃′ is to conforming to the constraints, the smaller ϵsol will be. So

We now have two quantities: ϵrep describes the representation precision and ϵsol describes the solver precision. We
define the quantity

ϵ′ = max(ϵrep, ϵsol) . (C12)
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Recall the relaxed set of approximate density matrices defined in (18),

Sϵ′ =
{
ρ ∈ H+

∣∣∣|Tr(Γ̃iρ)− γ̃i| < ϵ′, ∀i
}
. (C13)

From Lemma 13, it follows that S ⊆ Sϵ′ and our previous discussion implies that ρ̃′ ∈ Sϵ′ . Furthermore,

lim
ϵ′→0+

Sϵ′ = S , (C14)

so it is apparent that Sϵ′ is a natural generalization of S.

3. Proof of Theorem 4

Recall that

α = min
ρ∈S

f(ρ) , (C15)

αϵ′ = min
ρ∈Sϵ′

f(ρ) . (C16)

Note that since S ⊆ Sϵ′ it follows that αϵ′ ⩽ α. This means that any lower bound on αϵ′ is also a lower bound on α.
Next we consider a small perturbation as in Theorem 3. By applying an argument identical to that in Theorem 3

and invoking the relation αϵ′ ⩽ α we find that for any ρ ∈ Sϵ′ and 0 < ϵ < 1/(de)

α ⩾ f(ρ)− Tr(ρT∇f(ρ)) + ϵTr(∇f(ρ))− δϵ + min
σ∈Sϵ′

Tr(σT∇f(ρ)) . (C17)

We now focus on transforming the minimization in (C17) into a maximization via duality theory. First we rewrite
the minimization problem as

min
σ∈H

Tr(σT∇f(ρ)) (C18)

s.t.Tr(Γ̃iσ) ⩽ γ̃i + ϵ′ (C19)

Tr(−Γ̃iσ) ⩽ −γ̃i + ϵ′ (C20)
σ ⩾ 0 (C21)

We introduce the slack variables a⃗ and b⃗ so that the problem becomes

min
σ∈H

Tr(σT∇f(ρ)) (C22)

s.t.Tr(Γ̃iσ) + ai = γ̃i + ϵ′ (C23)

Tr(−Γ̃iσ) + bi = −γ̃i + ϵ′ (C24)
σ ⩾ 0 (C25)

a⃗, b⃗ ⩾ 0 (C26)

Next we recast the problem so that there is again one positive semidefinite variable. Define the block-diagonal matrices

σ̃ = diag(σ, a⃗T , b⃗T ) (C27)

∇f̃(ρ) = diag(∇f(ρ), 0⃗) (C28)

Γ̃+
i = diag(Γ̃i, δi1, δi2, ..., δin, 0⃗

T ) (C29)

Γ̃−
i = diag(−Γ̃i, 0⃗

T , δi1, δi2, ..., δin) (C30)

where δij denotes the Kronecker delta. The optimization problem then becomes

min
σ̃∈H

Tr(σ̃T∇f̃(ρ)) (C31)

s.t.Tr(Γ̃±
i σ̃) = ±γ̃i + ϵ′ (C32)

σ̃ ⩾ 0 (C33)
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This is a semidefinite program of a form identical to the one that appears in the proof of Theorem 1. Duality theory
yields the dual problem

max
y⃗∈S∗

ϵ′ (ρ)
(⃗̃γT + ϵ′,−⃗̃γT + ϵ′)T · y⃗ . (C34)

Substituting (C34) into (C17) gives the desired lower bound.

Appendix D: Tightness

1. Some useful lemmas

Here we state some lemmas that will eventually help us prove the tightness of our lower bounding method. We
begin with a corollary of Theorem 3, as follows.
Corollary 14: If ρ(ϵ)∗ minimizes f over S(ϵ) and ρ∗ minimizes f over S then

|f(ρ(ϵ)∗)− f(ρ∗)| ⩽ δϵ (D1)

Proof. We first note that (D1) can be rewritten as

f(ρ(ϵ)∗)− δϵ ⩽ f(ρ∗) ⩽ f(ρ(ϵ)∗) + δϵ (D2)

where the leftmost inequality was proven in (B43) and hence, we only need to show that

f(ρ∗) ⩽ f(ρ(ϵ)∗) + δϵ . (D3)

We may invoke (B41) to obtain

f(σ) ⩽ f(M(σ)) + δϵ (D4)

where σ = M−1(ρ(ϵ)∗). Thus

f(M−1(ρ(ϵ)∗)) ⩽ f(ρ(ϵ)∗) + δϵ (D5)

Since ρ(ϵ) minimizes f over S and M−1 : S(ϵ) → S it follows that

f(ρ∗) ⩽ f(ρ(ϵ)∗) + δϵ . (D6)

Next we state a few lemmas that pertain to the trace of the gradient, starting with the following.
Lemma 15: For a d× d density matrix σ, define σ(ϵ) = σ + ϵ11 with ϵ > 0. Then,

lim
ϵ→0

ϵTr [log(σ(ϵ))] = 0 . (D7)

Proof. Since 0 ⩽ σ ⩽ 11, it follows that

ϵ11 ⩽ σ(ϵ) ⩽ (1 + ϵ)11 . (D8)

Now note that the matrix logarithm is an operator monotone, hence

(log ϵ)11 ⩽ log(σ(ϵ)) ⩽ (log(1 + ϵ))11 . (D9)

Taking the trace and multiplying by ϵ gives

dϵ log ϵ ⩽ ϵTr [log(σ(ϵ))] ⩽ dϵ log(1 + ϵ) . (D10)

Now taking the limit ϵ→ 0 we see that both the left and right sides of (D10) go to zero, proving the desired result.

Now we state a slightly more general lemma, whose proof is similar.
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Lemma 16: For a d× d density matrix σ, define σ(ϵ) = σ + ϵ11 with ϵ > 0. Also, let E and F be completely positive
(CP) maps that are independent of ϵ. Then,

lim
ϵ→0

ϵTr [E(log(F(σ(ϵ))))] = 0 . (D11)

Proof. Follow the same proof as the previous lemma, starting with (D8). Next note that F is CP, so it preserves
positivity, giving

ϵF(11) ⩽ F(σ(ϵ)) ⩽ (1 + ϵ)F(11) . (D12)

Taking the logarithm and using the fact that E is CP gives

E(log(ϵF(11))) ⩽ E(log(F(σ(ϵ)))) ⩽ E(log((1 + ϵ)F(11))) . (D13)

Taking the trace and multiplying by epsilon gives

L(ϵ) ⩽ ϵTr [E(log(F(σ(ϵ))))] ⩽ R(ϵ) (D14)

with

L(ϵ) := ϵTr [E(log(ϵF(11)))] , R(ϵ) := ϵTr [E(log((1 + ϵ)F(11)))] . (D15)

Note that for a matrix A and constant c, we have log(cA) = (log c)11 + logA. This gives

L(ϵ) = ϵTr [E((log ϵ)11 + log(F(11)))] (D16)
= (ϵ log ϵ)Tr [E(11)] + ϵTr [E(log(F(11)))] . (D17)

Since both E and F are independent of ϵ, both the first and second term of (D17) go to zero as ϵ→ 0, and hence

lim
ϵ→0

L(ϵ) = 0. (D18)

Similarly

R(ϵ) = (ϵ log(1 + ϵ))Tr [E(11)] + ϵTr [E(log(F(11)))] , and lim
ϵ→0

R(ϵ) = 0. (D19)

This proves the desired result.

Proposition 17: For any d× d density matrix σ, define σ(ϵ) = σ + ϵ11. The gradient formula in (11) satisfies

lim
ϵ→0

ϵTr [∇f(σ(ϵ))] = 0 . (D20)

Proof. From Eq. (11), we have

ϵTr [∇f(σ(ϵ))] = T1(ϵ)− T2(ϵ), with (D21)

T1(ϵ) := ϵTr
[
G†(log G(σ(ϵ)))

]
(D22)

T2(ϵ) := ϵTr
[
G†(logZ(G(σ(ϵ))))

]
. (D23)

Note that both T1(ϵ) and T2(ϵ) have the same form as the expression appearing in Lemma 16. For T1(ϵ), apply
Lemma 16 with E = G† and F = G to find that

lim
ϵ→0

T1(ϵ) = 0 . (D24)

Likewise for T2(ϵ), apply Lemma 16 with E = G† and F = Z ◦ G to find that

lim
ϵ→0

T2(ϵ) = 0 . (D25)

Combining (D24) and (D25) gives the desired result.
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2. Tightness of the lowerbound in Theorem 4

In this section we show that the method in Theorem 4 is tight. We want to show that as ϵ → 0 and ϵ′ → 0, the
minimizer ρ∗ϵ′ of f over Sϵ′ satisfies

βϵϵ′(ρ
∗
ϵ′(ϵ))− δϵ → f(ρ∗) (D26)

where ρ∗ minimizes f over S and the left-hand side of (D26) is the lower bound produced by Theorem 4. We state
this as the following theorem.
Theorem 18: Let ρ∗ϵ′ be the minimizer of f over Sϵ′ . Then

lim
ϵ,ϵ′→0

βϵϵ′(ρ
∗
ϵ′(ϵ))− δϵ = f(ρ∗) . (D27)

Proof. Taking the limit of the lower bound in Theorem 4 as ϵ′ → 0 we recover the bound in Theorem 3. That is

lim
ϵ,ϵ′→0

βϵϵ′(ρ
∗
ϵ′(ϵ))− δϵ = lim

ϵ→0
βϵ(ρ

∗(ϵ))− δϵ . (D28)

Now by (B40)

lim
ϵ,ϵ′→0

βϵϵ′(ρ
∗
ϵ′(ϵ))− δϵ = lim

ϵ→0
f(ρ∗(ϵ))− ϵTr(∇f(ρ∗(ϵ)))− δϵ (D29)

= lim
ϵ→0

[f(ρ∗(ϵ))− δϵ]− lim
ϵ→0

[ϵTr(∇f(ρ∗(ϵ)))] . (D30)

Note that the second term in (D30) involving the gradient vanishes, from Proposition 17. This gives

lim
ϵ,ϵ′→0

βϵϵ′(ρ
∗
ϵ′(ϵ))− δϵ = lim

ϵ→0
[f(ρ∗(ϵ))− δϵ] . (D31)

Finally, Corollary 14 implies that

lim
ϵ,ϵ′→0

βϵϵ′(ρ
∗
ϵ′(ϵ))− δϵ = f(ρ∗) . (D32)

Thus, given suitably small ϵ, ϵ′ it follows that the bound produced by Theorem 4 applied to a near-optimal state is
arbitrarily tight.

Appendix E: Examples

1. Efficiency Mismatch

For the BB84 protocol with detector efficiency mismatch, we model it as an entanglement-based protocol. We write
Alice’s POVM as

PA
1 = pz|0⟩⟨0| , PA

2 = pz|1⟩⟨1| , PA
3 = (1− pz)|+⟩⟨+| , PA

4 = (1− pz)|−⟩⟨−| (E1)

where {|0⟩, |1⟩} is the z-basis on a qubit, and |±⟩ = 1/
√
2(|0⟩ ± |1⟩). Here pz denotes the probability for Alice to

measure in the z-basis. For our numerics, we chose pz ≈ 1, corresponding to using the z-basis most of the time.
We model Bob’s system as a qutrit, where the one-photon subspace is modeled as a qubit subspace, and the third

dimension is the vacuum. This third dimension is incorporated because of detector inefficiency, which may cause a
no-click event. Bob’s POVM elements associated with detecting a photon are given by

PB
1 = pz|0⟩⟨0| ⊕ 0 , PB

2 = pzη|1⟩⟨1| ⊕ 0 , PB
3 = (1− pz)|+⟩⟨+| ⊕ 0 , PB

4 = (1− pz)η|−⟩⟨−| ⊕ 0 , (E2)

where the direct sum is used here to embed qubit operators inside a qutrit Hilbert space. Note that PB
2 and PB

4 have
a factor of η due to detector inefficiency. (We assume one detector has perfect efficiency, while the other has efficiency
η.) The last of Bob’s POVM elements corresponds to a no-click event,

PB
5 = 11 −

4∑
j=1

PB
j . (E3)
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To generate the constraints in (35), we simulate the data using a depolarizing channel with depolarizing probability
p,

Edep(ρ) = (1− p)ρ+ p11/2 . (E4)

We consider the bipartite state generated from applying this channel to half of a maximally entangled state |Φ⟩,

ρsim
AB = (I ⊗ Edep)(|Φ⟩⟨Φ|) , (E5)

and we emphasize that this state is only used to simulate experimental data. To obtain the constraints in (35), we
compute

pjk = Tr((PA
j ⊗ PB

k )ρsim
AB) . (E6)

Now consider Alice’s and Bob’s announcements. For sifting purposes, Alice announces her basis, and so (40)
becomes

KA
0 =

√
PA
1 ⊗ |0⟩Ã ⊗ |0⟩A +

√
PA
2 ⊗ |0⟩Ã ⊗ |1⟩A (E7)

KA
1 =

√
PA
3 ⊗ |1⟩Ã ⊗ |0⟩A +

√
PA
4 ⊗ |1⟩Ã ⊗ |1⟩A . (E8)

Likewise Bob announces his basis and he announces whether he got a click or not. We can model this with three
Kraus operators as follows

KB
0 =

√
PB
1 ⊗ |0⟩B̃ ⊗ |0⟩B +

√
PB
2 ⊗ |0⟩B̃ ⊗ |1⟩B (E9)

KB
1 =

√
PB
3 ⊗ |1⟩B̃ ⊗ |0⟩B +

√
PB
4 ⊗ |1⟩B̃ ⊗ |1⟩B (E10)

KB
2 =

√
PB
5 ⊗ |2⟩B̃ ⊗ |0⟩B . (E11)

Next we consider the post-selection. Events where Bob does not receive a click, or where Alice and Bob use different
bases, are discarded. Hence, (43) becomes

Π = |0⟩⟨0|Ã ⊗ |0⟩⟨0|B̃ + |1⟩⟨1|Ã ⊗ |1⟩⟨1|B̃ . (E12)

Finally, consider the isometry V associated with the key map defined in (45). We can define the key map such that
Alice stores 0 (1) in her key when she obtains outcome PA

1 or PA
3 (PA

2 or PA
4 ). This gives

V = |0⟩R ⊗ |0⟩⟨0|A + |1⟩R ⊗ |1⟩⟨1|A , (E13)

with identity acting on all other subsystems. The above expressions allow one to define G in (54), and hence define
the optimization problem.

2. Trojan-horse attack

We model the BB84 protocol under a Trojan-horse attack as a prepare-and-measure protocol with sifting. As
discussed in Sec. IV, we treat this by constructing the source-replacement state,

|ψ⟩AA′ =

√
px
2
|0⟩|ϕx+⟩+

√
px
2
|1⟩|ϕx−⟩+

√
1− px

2
|2⟩|ϕy+⟩+

√
1− px

2
|3⟩|ϕy−⟩ (E14)

where {|ϕx±⟩, |ϕy±⟩} are the signal states specified in (56)-(59). For high-efficiency sifting [37], we bias the probability
distribution so that the x-basis is used most of the time, i.e., px ≈ 1. Within this framework, Alice prepares her signal
states by acting with a POVM on register system A, with POVM elements

PA
1 = |0⟩⟨0| , PA

2 = |1⟩⟨1| , PA
3 = |2⟩⟨2| , PA

4 = |3⟩⟨3| . (E15)

Bob measures in either the x- or y-basis via the following POVM

PB
1 = px|x+⟩⟨x+| , PB

2 = px|x−⟩⟨x−| , PB
3 = (1− px)|y+⟩⟨y+| , PB

4 = (1− px)|y−⟩⟨y−| , (E16)
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where for simplicity we set the px appearing in Bob’s measurement to be the same value as that used for Alice’s signal
states.

Next we consider data simulation for the purpose of formulating the constraints in (35). We model Eve’s attack as
a depolarizing channel (E4) with depolarizing probability p. (Note that p = 2Q, where Q is the error rate plotted in
Fig. 4.) Applying this channel to the state |ψ⟩AA′ gives

ρsim
AB = (I ⊗ Edep)(|ψ⟩⟨ψ|AA′) . (E17)

To obtain the constraints in (35), we compute

pjk = Tr((PA
j ⊗ PB

k )ρsim
AB) . (E18)

Since Alice’s density operator is fixed, we add the additional constraints specified by (38).
Now we consider the announcements made by Alice and Bob. Alice announces her choice of basis, so (40) becomes

KA
0 =

√
PA
1 ⊗ |0⟩Ã ⊗ |0⟩A +

√
PA
2 ⊗ |0⟩Ã ⊗ |1⟩A (E19)

KA
1 =

√
PA
3 ⊗ |1⟩Ã ⊗ |0⟩A +

√
PA
4 ⊗ |1⟩Ã ⊗ |1⟩A . (E20)

(We remark that, in this case, introducing the additional register system A is redundant since the key information
can be read off directly from system A, but we do it here for completeness.)

Similarly, Bob announces his choice of basis, so (39) becomes

KB
0 =

√
PB
1 ⊗ |0⟩B̃ ⊗ |0⟩B +

√
PB
2 ⊗ |0⟩B̃ ⊗ |1⟩B (E21)

KB
1 =

√
PB
3 ⊗ |1⟩B̃ ⊗ |0⟩B +

√
PB
4 ⊗ |1⟩B̃ ⊗ |1⟩B . (E22)

For the post-selection, Alice and Bob discard events where they measure in different bases. So (43) becomes

Π = |0⟩⟨0|Ã ⊗ |0⟩⟨0|B̃ + |1⟩⟨1|Ã ⊗ |1⟩⟨1|B̃ . (E23)

Finally, consider the isometry V associated with the key map defined in (45). We can define the key map such that
Alice stores 0 (1) in her key when she obtains outcome PA

1 or PA
3 (PA

2 or PA
4 ). This gives

V = |0⟩R ⊗ |0⟩⟨0|A + |1⟩R ⊗ |1⟩⟨1|A , (E24)

with identity acting on all other subsystems. The above expressions allow one to define G in (54), and hence define
the optimization problem.

3. BB84 protocol with phase-coherent signal states

We model the BB84 protocol with phase-coherent signal states as a prepare-and-measure protocol with sifting,
similar to how we modeled the Trojan-horse attack above. We apply the source-replacement scheme as described in
Sec. IV, with the state |ψ⟩AA′ from (36) given by

|ψ⟩AA′ =

√
pz
2
|0⟩|ϕz+⟩+

√
pz
2
|1⟩|ϕz−⟩+

√
1− pz

2
|2⟩|ϕx+⟩+

√
1− pz

2
|3⟩|ϕx−⟩ (E25)

where {|ϕz±⟩, |ϕx±⟩} are specified in (60)-(63). Here, pz denotes the probability of Alice preparing a state in the
z-basis, and it is biased to be close to one.

Alice’s POVM acts on the register system A with the standard basis elements, namely

PA
1 = |0⟩⟨0| , PA

2 = |1⟩⟨1| , PA
3 = |2⟩⟨2| , PA

4 = |3⟩⟨3| . (E26)

By applying a squashing model [38], we model Bob’s system as a qutrit, where the one-photon subspace is modeled
as a qubit subspace, and the third dimension is the vacuum. This third dimension is incorporated because of channel
loss, which may cause a no-click event. Bob’s POVM elements are then

PB
1 = pz|0⟩⟨0| ⊕ 0 , PB

2 = pz|1⟩⟨1| ⊕ 0 , PB
3 = (1− pz)|+⟩⟨+| ⊕ 0 , PB

4 = (1− pz)|−⟩⟨−| ⊕ 0 , PB
5 = 11 −

4∑
i=1

PB
i .

(E27)
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Next we consider data simulation for the purpose of formulating the constraints in (35). We model the channel
between Alice and Bob as a lossy channel Eloss(ρ) with transmission probability η. Note that the action of this channel
on a coherent state is |α⟩ → |√ηα⟩. We can apply the channel to the state |ψ⟩AA′ to obtain the bipartite state

ρsim
AB = (I ⊗ Eloss)(|ψ⟩⟨ψ|AA′) . (E28)

The remainder of the model is identical to that of Sec. E 2 from (E18) onwards. This defines the optimization problem.


