On the implausibility of classical client blind quantum computing
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Suppose a large scale quantum computer becomes available over the Internet. Could we delegate universal
quantum computations to this server, using only classical communication between client and server, in a
way that is information-theoretically blind (i.e., the server learns nothing about the input apart from its size,
with no cryptographic assumptions required)? We give indications that the answer is no. This contrasts with
the situation where quantum communication between client and server is allowed — where we now know,
from work over the past decade, that such a task is possible using Universal Blind Quantum Computation
(UBQC) [ (see Figure [1| for a schematic illustration). It also contrasts with the case where cryptographic
assumptions are allowed: there again, it is now known that there are quantum analogues of fully homomorphic
encryption (though, these also require some quantum communication) [2/3].
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Fig. 1: Universal Blind Quantum Computation

In more detail, we observe that, if there exist information-theoretically secure classical schemes for per-
forming universal quantum computations on encrypted data, then we get unlikely containments between
complexity classes, such as BQP C NP/poly. This follows from a framework defined by Abadi, Feigenbaum
and Killian known as a generalised encryption scheme (GES) []. A GES is a protocol between a classical
client and an unbounded server. The client has an input 2 for which it wants to compute f(z), but lacks
the computational requirements to do so. The client can delegate the computation of f(x) to the server, but
would like to keep x hidden in an information-theoretic sense, apart from an upper bound on the size of x.
The GES then works as follows:

(1) The client generates a key k and computes an encryption of z, denoted y < E(k, ), using a polynomial-
time algorithm FE.

(2) The client sends y to the server.

(3) The two interact for a number of rounds that is polynomial in the size of x.

(4) The client applies a polynomial-time decryption algorithm D on the server’s responses, §, and on k and
x obtaining, with probability at least 1/2 4+ 1/poly(|x|), the desired result f(x) + D(8, k,x).

Abadi et al. showed that the types of functions which admit such a scheme are contained in the complexity
class NP /polyncoNP /poly. Thus, if polynomial-time quantum computations could be performed using a GES,



then BQP C NP/poly N coNP/poly. Showing that BQP ¢ NP/poly is no easier than showing that P # NP so
we cannot give a definite proof of this fact. However, we prove two results which indicate why the containment
is unlikely.

First, we show that if we fix the advice polynomial of NP /poly, in other words, we consider the class
NP/O(n?), then we can construct an oracle separating BQP from that class. The oracle is based on a version
of the complement of Simon’s problem which is also used to separate BQP from NP [5l6].

Our second result concerns sampling problems and can, arguably, be considered more compelling than
the oracle result. In the case of sampling problems, the input, x, specifies a certain distribution D, and the
output is a sample from that distribution, in the exact case, or a sample from a distribution C, that is close
in variation distance to D,, in the approximate case. We redefine the notion of a GES for the case when
the client wishes to delegate sampling problems to the server. We then show that having such a scheme for
BOSONSAMPLING [7], implies the existence of non-uniform circuits of size 2"~2(?/109(")) ‘making polynomially
sized queries to an NPNP oracle, for computing the permanent of an n x n matrix. We conjecture that such
circuits do no exist, given that the best known algorithm for computing the permanent is Ryser’s algorithm,
developed over 50 years ago, which requires O(2"n) arithmetic operations [§].

We then proceed to extend the Abadi et al. result to the setting where one round of quantum commu-
nication is allowed between the client and the server, referring to this as a quantum GES (QGES). This
is done in order to investigate the complexity theoretic limitations of protocols such as UBQC which is
a particular instance of a QGES. We show that for QGES protocols, having an extra property known as
offline-ness, the functions which can be computed are contained in the class QCMA /gpoly N coQCMA/gpoly.
Roughly speaking, an offline protocol is one in which the client does not need to commit to any particular
input (of a given size), after having sent the first encrypted message to the server. In other words, there
is some efficient (quantum) operation which the client can use to change its input after having initiated
communication with the server. This property is satisfied by UBQC. We then use this result to show that,
under plausible complexity assumptions, a QGES would be no more useful than a classical GES at delegating
NP-hard problems to the server. To be more precise, we show that if NP € QCMA/gpoly N coQCMA/gpoly

PromiseQMA
then NE C NPNP , which is as close to a collapse of the polynomial hierarchy as one can reasonably
hope to get given a quantum hypothesis.

Lastly, we briefly comment on the implications of these results for the prospect of verifying a quantum
computation through classical interaction with the server. When the client has a single-qubit preparation
device, Fitzsimons and Kashefi showed that the UBQC protocol can be made verifiable [9]. Because of the
success of transforming UBQC into a verification protocol the hope was that if one could develop a classical
client version of UBQC then that protocol could also be made verifiable. Indeed, blindness seems like a very
useful property for a protocol to have if one wishes to make it verifiable. Our result, however, indicates that
it is unlikely to have a classical client quantum protocol which relies on blindness.

The motivation for our results is twofold. Firstly, the complexity theoretic approach we use allows us to
establish very precise conditions for what is and what is not possible in regards to quantum computing on
encrypted data. In particular, given the importance of this application and the need for practical protocols,
our “no-go” result for classical clients informs the direction of future research in this field: we either have
to consider protocols leaking more information to the server, such as the approach from [I0], or consider
schemes with computational security, such as the approach from [T1].

Secondly, we emphasize the significance of the complexity theoretic upper bound on functions which can
be computed with a QGES, as well as the result that NP-hard functions are unlikely to satisfy this bound.
Quantum computers could, in principle, solve NP-complete problems quadratically faster than classical com-
puters, thanks to Grover’s algorithm [12]. Even though the speedup of Grover’s algorithm is only quadratic,
from (say) 2" to 27/2 our second no-go theorem is only concerned with the length of the computation per-
formed on the client side, and therefore applies to Grover’s algorithm just as it would to a quantum algorithm
achieving exponential speedup. Our result shows that clients cannot exploit a Grover speedup on the server
side, even when allowing some quantum communication, if we also want to keep their inputs hidden in an
information-theoretic sense. Furthermore, the technique used to arrive at the upper bound could prove useful
for deriving upper bounds in other settings (for instance when the client sends a logarithmic-size quantum
message to the server, instead of a polynomial-size one, or if we leak a different amount of information than
just the size of the input).
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