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We propose a scheme of loss resilient entanglement swapping between two distant parties in lossy opti-
cal fibre. In this scheme, Alice and Bob each begin with a pair of entangled non-classical states; these ”hybrid
states” of light are entangled discrete variable (Fock state) and continuous variable (coherent state) pairs. The
continuous variable halves of each of these pairs are sent through lossy optical fibre to a middle location,
where these states are then mixed (using a 50:50 beam-splitter) and measured. The detection scheme we use
is to measure one of these modes via vacuum detection, and to measure the other mode using homodyne
detection.

In this work we show that the Bell state |Φ+〉 = (|00〉+ |11〉)/
√

2 can theoretically be produced following
this scheme with high fidelity and entanglement, even when allowing for a small amount of loss. It can
be shown that there is an optimal amplitude value (α) of the coherent state when allowing for such loss.
We also investigate the realistic circumstance when the loss is not balanced in the propagating modes. We
demonstrate that a small amount of loss mismatch does not destroy the overall entanglement, thus demon-
strating the physical practicality of this protocol.

1 Introduction

Distributing entanglement over long distances is a
key enabler for quantum communications to be re-
alised on a worldwide scale. Entanglement is an in-
valuable resource in quantum key distribution [1–3],
quantum secret sharing [4, 5] and quantum telepor-
tation [6, 7]. Entanglement swapping is performed
by two distant parties (Alice and Bob), that each
possess a pair of entangled states (modes “AB” and
“CD” respectively). If they each send one of their
systems (B and D) to a central location, a suitable
joint measurement entangles the remaining systems
(A and C) that Alice and Bob still possess, thus the
name “entanglement swapping” [8]. Entanglement
swapping (ES) in this way is analagous to a quan-
tum teleportation scheme, where modes B and D
are “teleported” to modes A and C respectively as
a result of the joint measurement of modes B and
D [9].

Currently, ES protocols suffer from sending
quantum signals through an optical fibre which in-
troduces decoherence and photon loss [10]. Miti-
gating against this issue takes ES protocols closer
to practical implementation, with increased poten-
tial for application in quantum repeater [11–14] and
quantum relay [15–18] schemes. Furthermore, ES
is a perfectly viable method of potentially realis-
ing truly long distance quantum communications
[19,20] and has recently been demonstrated at a dis-
tance of 100 km using optical fibre and time-bin en-
tangled photon-pairs [21], and also at telecom wave-
lengths with high efficiency [11].

ES was initially proposed using discrete vari-

able (DV) states [8], and was shown experimentally
using polarised photons [22, 23] and vacuum-one-
photon quantum states [24]. However, as a result of
detector inefficiencies lowering success probability
(a Bell-State measurement is bounded by 1/2 when
using only linear optical elements [25]), ES events
occur rarely when using only DVs. Research then
began on the use of continuous variables (CVs) for
ES [?,26,28], and was first performed experimentally
in 2004 [29]. Photonic coherent states work well for
ES based on CV states, as coherent states are typi-
cally more resilient to photon losses [30].

In this paper we investigate the use of entan-
gled hybrid states for application in an ES pro-
tocol. These hybrid states of light are entangled
discrete and continuous variable quantum states.
Hybrid states of light are particularly effective for
ES schemes, and have been used in experimental
proofs using squeezed states as the CV part [31] and
also coherent states [32]. The DV part uses as basis
states the vacuum and single photon Fock (number)
states, and the CV part uses the basis states of nearly
orthogonal coherent states.

This paper is organised as follows. In Section 2
we introduce the ES protocol used in this work, as
well as the detection methods used. In Section 3 we
introduce unequal lossy modes, and parametrise a
value for this “loss mismatch”. In Section 4 we show
that the subsequent entanglement shared by Alice
and Bob is not severely damaged when allowing for
unequal lossy modes, and show that high levels of
fidelity and entanglement can be reached. Our con-
clusions are given in Section 5.
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2 Entanglement Swapping with Loss

2.1 Building Block Entangled States

We here use a specific bipartite entangled state
(which we refer to as a hybrid entangled state),
which has a DV qubit in a spatial mode and a CV
qubit in the other mode, as follows:

|ψHE〉AB =
1√
2

(|0〉A |α〉B + |1〉A |−α〉B), (1)

where the subscriptA andB can be replaced with C
and D respectively to describe the other initial hy-
brid entangled state |ψHE〉CD. The mode B is as-
sumed to be a photonic coherent state going through
a photon-lossy channel, while the stationary mode
A can be represented by various physical systems.
For example, a hybrid photonic state has been re-
cently demonstrated using a vacuum and a single-
photon state for mode A in [33] as well as using po-
larisation photons in [34].

Instead of the vacuum and single-photon states,
for solid-state stationary qubits, atomic ensembles
and ions can be excellent candidates to create the
state |ψHE〉. For example, a non-maximally entan-
gled state can be created in the hybrid fashion

|φHE〉Ap ≈
√

1− pc |G〉A |0〉p +
√
pc |W 〉A |1〉p , (2)

where pc is the success probability of having a sin-
gle photon in spatial mode p, and |G〉 and |W 〉 are
the hyperfine states of an atomic ensemble (or an
ion) [35–37]. Then, we build the optical set-up so
that the spatial mode B is matched with one of two
directions of pair-wise parametric down-conversion
photons from a nonlinear crystal, with efficiency η,
while |α〉B is injected along the other direction of the
pair of photons.

|Ψtot〉ABp ≈
√

1− η
√

1− pc |G〉A |0〉p |α〉B
+
√
η
√

1− pc |G〉A |1〉p a
+
B |α〉B

+
√

1− η√pc |W 〉A |1〉p |α〉B
+
√
η
√
pc |W 〉A |2〉p a

+
B |α〉B (3)

If we detect a single photon in mode p and
pc = η, the final state is approximately equal to
(|G〉A |α′〉B + |W 〉A |−α′〉B)/

√
2 [33].

2.2 Lossy Modes

We use a vacuum state in mode εB and εD (|0〉εB
and |0〉εD respectively) as is standard for modelling
loss using a beam-splitter, where the second input
state is the propagating coherent state in mode B
or D which is mixed with the vacuum state to imi-
tate loss. The two lossy modes are mixed at a 50:50
beam-splitter (BS1/2) and are then measured using
a vacuum projection in mode B and a homodyne
measurement in mode D.

The full ES protocol, including loss, is shown in
Fig. 1.

Figure 1: Diagram to represent the four channel system (where
|ψHE〉AB and |ψHE〉CD are entangled hybrid states) undergo-
ing entanglement swapping with two lossy channels (B and D),
modelled by mixing a vacuum state (|0〉εB and |0〉εD respec-
tively) using a beam-splitter of transmission rate T (BST

B,εB

and BST
D,εD

). The lossy modes B and D are then mixed at a

50:50 beam-splitter (BS1/2
B,D) and subsequently measured (DB

and DD) to complete the protocol.

Through this ES protocol, Alice and Bob can share
an entangled pair of qubits that could then be used
for quantum communications. In this work we
show that this ES scheme is tolerant to low levels
of loss in the propagating coherent states, resulting
in Alice and Bob ultimately sharing a pair of highly
entangled qubits of impressive fidelity when com-
pared to the maximally entangled |Φ+〉 Bell state.

In this ES scheme we have a beam-splitter (BS) of
transmission T described byBSTi,j , where i and j are
the modes that are mixed at the BS. Let us therefore
assume that we have a loss rate of 1−T in a channel,
modelled by mixing modes B and D with vacuum
states in modes εB and εD respectively at separate
BSs. Each hybrid entangled state is then given by

|ψloss〉ABεB = BSTB,εB |ψHE〉AB |0〉εB

=
1√
2

(
|0〉A |α

√
T 〉B |α

√
1− T 〉εB +

|1〉A |−α
√
T 〉B |−α

√
1− T 〉εB

)
, (4)

where the hybrid entangled quantum state is given
in Eq. 1. Note that Eq. 4 is identical for modelling
loss in mode D, using a vacuum state in mode εD.

After accounting for loss as described above, we
then mix the two propagating lossy modes at a 50:50
BS. Mixing two coherent states with a (generalised)
BS of transmission t is given by

BStB,D |α〉B |β〉D =

|α
√
t− β

√
1− t〉B |α

√
1− t+ β

√
t〉D , (5)
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where, α and β are complex numbers. In this pro-
tocol we mix coherent states of the same amplitude
using a 50:50 BS, therefore t = 1/2.

2.3 Detection Methods

For successful ES, we measure mode D via (per-
fect) balanced homodyne detection, and mode B by
a vacuum measurement. It was found that if two
homodyne measurements are performed on modes
B and D, then the resultant quantum state is a su-
perposition of all possible 2 qubit strings, which is a
product state and is therefore undesirable as an out-
come for this protocol.

A generalised scheme of balanced homodyne de-
tection consists of one 50:50 BS, a strong coherent
field |βeiθ〉 of amplitude β (where β is real) and two
photodetectors; the probe mode (mode D) is com-
bined at a BS with the strong coherent field (“lo-
cal oscillator”) of equal frequency, and photodetec-
tion is then used to measure the outputs [38]. If we
perform homodyne detection on an input signal in
mode B1 and the coherent field is injected in mode
B2, then the operator BS1/2

B1,B2
mixes the input state

and the coherent field, as shown in Fig. 2.

Figure 2: Diagram to represent the two channel system undergo-
ing balanced homodyne detection, where B1 is the input signal
(modeD in protocol), andB2 is the local oscillator. IB1−B2 is the
intensity difference between the photodetectors DB1

and DB2
.

The intensity difference (photon number differ-
ence) between the two photodetectors (DB1

and
DB2

) can be calculated using the two mode operator
ÎB1−B2

= b̂†1b̂2 + b̂†2b̂1, with creation and annihilation
operator denoted by b̂†i and b̂i respectively, in mode
Bi. It therefore follows that,

ÎB1−B2 = 2β〈x̂θ〉, (6)

where, x̂θ = 1
2

(
b̂1e
−iθ + b̂†1e

iθ
)

[39], β is the ampli-
tude of the strong coherent field injected in mode
B2, and the phase of the quadrature x̂θ is given by
the phase of this local oscillator. The probability am-
plitude of a homodyne measurement on an arbitrary
coherent state |αeiϕ〉 can be described by projecting
with an x̂θ eigenstate, where x̂θ |xθ〉 = xθ |xθ〉, for
real α [40]:

〈xθ|αeiϕ〉 =
1

π
1
4

exp

[
− 1

2
(xθ)

2 +
√

2ei(ϕ−θ)αxθ

−1

2
e2i(ϕ−θ)α2 − 1

2
α2

]
,

(7)

where the subscript on xθ is indicative of the an-
gle in which the homodyne measurement is per-
formed. In this protocol specifically we will theo-
retically measure mode D using homodyne detec-
tion in the θ = π

2 plane; if we measure in this plane
then we are not able to distinguish between the two
remaining states (|00〉AC and |11〉AC), thus leaving
them entangled, whereas if one were to measure in
the θ = 0 plane then these states are distinguishable,
which would destroy any entanglement.

2.4 Entanglement Swapping with Equal Lossy
Modes

Measuring a vacuum in modeB and performing ho-
modyne detection in mode D results in the follow-
ing state, which shows the entangled pair of qubits
shared by Alice and Bob after carrying out this pro-
tocol in its entirety (prior to tracing out the lossy
modes):

|ψloss〉ACεBεD =

Ne(T−1)|α|2
∞∑

n,m=0

(α
√

1− T )n+m

√
n!
√
m!

|n〉εB |m〉εD .(
e
−2iαxπ

2

√
T |00〉AC + (−1)n+me

2iαxπ
2

√
T |11〉AC

+ e−T |α|
2

((−1)m |01〉AC + (−1)n |10〉AC)
)
, (8)

where, N is a normalisation coefficient, and the
lossy modes (εB and εD) are summed over |n〉εB
and |m〉εD respectively (using the Fock (number)
state basis representation of a coherent state, |α〉 =

e−
|α|2

2

∑∞
n=0

αn√
n!
|n〉 [39]). If one sets the amplitude

of the coherent state as T |α|2 >> 1 in Eq. 8, then
the resultant state contains only the diagonal |00〉AC
and |11〉AC terms, as the off-diagonal |01〉AC and
|10〉AC terms are rapidly exponentially dampened
by the exponent e−T |α|

2

. After tracing out the lossy
modes, and taking these limits of T |α|2 >> 1, the
resultant density matrix from this quantum state is

ρAC ≈
1

2
e2(T−1)|α|2

∞∑
n,m=0

((T − 1)α2)n+m

n!m!
.[

|00〉AC 〈00|+ |11〉AC 〈11|

+ (−1)n+me
4iαxπ

2

√
T |11〉AC 〈00|

+ (−1)n+me
−4iαxπ

2

√
T |00〉AC 〈11|

]
. (9)

Note that the phase factors in Eq. 9 are known
phase factors, set by the measurement outcome xπ

2
.
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These can either be corrected through local opera-
tions feeding forward the measurement result, or
simply carried through the protocol and dealt with
in subsequent post-processing.

It will be shown in Section 4 that the entangle-
ment negativity, fidelity and linear entropy of ρAC ,
with respect to the maximally entangled Bell State
|Φ+〉 = 1√

2
(|00〉+|11〉), is optimal for a specific value

of the amplitude (α) of the coherent states that prop-
agate through the lossy modes.

3 Entanglement Swapping with Un-
equal Lossy Modes

It is important to consider the case of unequal lossy
modes in this protocol; in reality the beam-splitters
used to mimic lossy optical fibres will not be ab-
solutely equal, the resultant states that are emitted
will have different transmission (T ) values. How-
ever, we show here that the entanglement shared
between Alice and Bob after performing ES is not
significantly damaged if we consider unequal loss.

Firstly, we denote this “loss mismatch” variable
as δ, and we parametrise the transmission in each
lossy mode as TB → T and TD → T − δ where, like
T , δ can only take a value between 0 and 1. In gen-
eral δ will be a small, positive mismatch to avoid TD
exceeding unity. Performing an analogous deriva-
tion to that used to reach Eq. 8, and applying the
above parametrisation gives

|ψloss〉ACεBεD = Ne(T− δ2−1)|α|2 .
∞∑

n,m=0

(α
√

1− T )n(α
√

1− T + δ)m√
n!
√
m!

|n〉εB |m〉εD .(
e
−|αT−|

2

4 e
−T+iαxπ

2 |00〉AC

+(−1)me
−|αT+|

2

4 e
−T−iαxπ

2 |01〉AC

+(−1)ne
−|αT+|

2

4 e
T−iαxπ

2 |10〉AC

+(−1)n+me
−|αT−|

2

4 e
T+iαxπ

2 |11〉AC
)
, (10)

where, T± = (
√
T ±

√
T − δ). As an example here

we consider the case where a system is set up for
matched loss (1 − T ) but there is a small, unknown
mismatch. This can be calculated by taking an av-
erage over a distribution of δ. To find the aver-
aged density matrix (ρAC) of the state |ψloss〉ACεBεD ,
for some width in the distribution of the loss mis-
match δ, which we label as ∆, we must integrate the
density matrix ρAC(δ, T, α) over all positive values
of δ (where ρAC(δ, T, α) = |ψloss〉ACεBεD 〈ψ

loss|).
The distribution of the loss mismatch is a one-sided
(positive) Gaussian curve, and so the integral is of
the form

ρAC ≡
∫ ∞

0

f(δ,∆)ρAC(δ, T, α)dδ, (11)

where, f(δ,∆) =
√

2
π∆2 e

−δ2

2∆2 and
√

2
π∆2 is the nor-

malisation of the function. We will show in the next
section that this averaged density matrix provides a
high level of entanglement for an optimum α value
when considering low levels of loss, and unequal
loss in modes εB and εD.

We note that equation (10) could be used directly
to model a known mismatch between losses (for ex-
ample due to unequal lengths of fibre), by choos-
ing a specific value of δ. The results of such calcula-
tions show very similar impact on the entanglement
to those we give for averaging with a width ∆, so
we do not present these.

4 Results and Discussion

The fidelity (F ) of the final density matrix (Eq. 11)
can be determined using

F (|σ〉 , ρ) = 〈σ| ρ |σ〉 , (12)

where, |σ〉 = |Φ+〉 is the maximally entangled (pure)
Bell State, and ρ = ρAC is the final averaged den-
sity matrix [41]. Calculating the closeness (fidelity)
of ρAC to |Φ+〉 confirms that for an optimum am-
plitude of the coherent state (α ≈ 1.5), T = 0.99 in
mode B and T = 0.98 in mode D, the final state
shared by Alice and Bob is of impressive fidelity:
F = 0.93, where a fidelity of F = 1 indicates that
the states in comparison are indistinguishable. In-
trinsically, the fidelity is unity for the no loss case,
but what is promising here is that even for the case
with non-negligible loss where T = 0.95 in mode B
and T = 0.94 in D the fidelity reaches a maximum
of 0.81 for α = 1.3.

To evaluate the level of entanglement shared
between Alice and Bob after performing entangle-
ment swapping, we apply an entanglement measure
called “negativity” [42] using the following:

E (ρAC) = −2
∑
i

λ−i , (13)

where E denotes the entanglement value of ρAC
(which can take a value between 0, for no entan-
glement, and 1, for maximal entanglement), and λ−i
represents the negative eigenvalues of the partial
transpose of the final density matrix, ρAC . We also
calculate the linear entropy of ρAC using

SL (ρAC) = 1− Tr
[
ρAC

2
]
, (14)

where SL is the linear entropy of the system, and
can take any value between 0 (for a pure state) to
Smax.L = 1 − 1

d , where d is the dimension of the sys-
tem [43]. Therefore, in this case the maximum linear
entropy will be 0.5, corresponding to a maximally
mixed state.

The following plots show entanglement and lin-
ear entropy as a function of the amplitude (α) of
the coherent states used, with fixed transmission (T )
values.
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(a)

Figure 3: Plot of entanglement (3a) and linear entropy (3b) as a function of α, for a transmission of T = 1 and ∆ = 0, 0.001, 0.01, 0.1.

(a)

(b)

Figure 4: Plot of entanglement (4a) and linear entropy (4b) as a function of α, for a transmission of T = 0.99 and ∆ = 0, 0.001, 0.01, 0.1.
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(a)

(b)

Figure 5: Plot of entanglement (5a) and linear entropy (5b) as a function of α, for a transmission of T = 0.95 and ∆ = 0, 0.001, 0.01, 0.1.

Fig. 3a shows that for no loss in the system
(T = 1,∆ = 0), the entanglement reaches unity
when α > 1.7. For finite loss, when T < 1, the
optimum value of entanglement is approached and
is clearly given by a sharp peak as a function of α
(see Figs. 4a and 5a). Although this shifts to slightly
lower values of α when considering higher levels
of loss, there is always a clear peak in the plot at
a specific amplitude. This is as a result of the ana-
lytical expression defining the shared state between
Alice and Bob (Eq. 10), where the off-diagonal states
(with the exception of |00〉AC 〈11| and |11〉AC 〈00|)
are dampened when α >> 0. This therefore reduces
the entanglement, and also explains why the plots
tail off at higher amplitudes for finite T .

This is a key point of this paper: to have an op-
timum α value means that for a practical demon-
stration of this protocol an experimentalist would
know the level of loss that can be tolerated, given
the amplitude of the coherent state they have pre-
pared. Furthermore, this optimum value itself is de-
sirable - an amplitude of 2 is not large, but impor-
tantly it also is not too close to a vacuum state as to
be indistinguishable. Equally, were the amplitudes
of the coherent states to be closer to 0 then there is
the possibility that these states will overlap at the
vacuum, therefore making the superposition of |α〉D
and |−α〉D indistinguishable in a homodyne mea-
surement. Again, this further proves the possibil-

ity of performing this protocol experimentally, as a
coherent state of this kind of amplitude can be pre-
pared experimentally.

When T = 0.95, Fig. 5a shows that even when
considering high levels of loss for unequal lossy
modes (∆ = 0.01) the entanglement value is 0.63
for α ≈ 1.3. Although the state shared by Alice
and Bob is not highly entangled in this case it is
nonetheless still useful as a proof-of-principle ex-
periment of this particular entanglement swapping
protocol. What is promising in this protocol is that
in Fig. 4a, for a transmission of T = 0.99 in one
mode and T = 0.98 in the other (∆ = 0.01) the max-
imum entanglement value is 0.87, for α ≈ 1.5; these
levels of loss are likely to be the most realistic case
for a practical implementation of this protocol, and
although the entanglement is slightly lessened as a
result of this loss, there do still exist methods of in-
creasing entanglement, such as entanglement purifi-
cation schemes [44–46].

The linear entropy plots compliment the plots
of entanglement as a function of α perfectly: it is
clear from comparing linear entropy and entangle-
ment plots of the same transmission value that as
entanglement increases as function of α, the linear
entropy decreases for the same amplitude. What is
also worth noting is that in all linear entropy plots,
the case where we have significant differences in the
lossy modes (∆ = 0.1) gives the plots that show
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the highest level of entropy in the system. This of
course arises from the unequal lossy modes causing
the overall quantum state shared by Alice and Bob
to be more mixed, which in turn is confirmed by the
entanglement plots showing lower levels of entan-
glement for ∆ = 0.1.

Another important quantity to evaluate is the
success probability of the protocol. Here we focus
on the success probability of the vacuum projection
(in mode B) in this ES scheme. Clearly what is of
interest is the success probability where the entan-
glement peaks as a function of the coherent state
amplitude α. Calculation of this success probability
shows that it is unity for the case of very small α, but
drops rapidly and plateaus at 1/2 at the same value
of α where the entanglement plots peak (α ≈ 1.5).
What is promising here is that the success proba-
bility does not decrease as T drops from 1 to 0.95.
Furthermore, the loss mismatch does not reduce the
success probability in the regime of small α, and
only drops to less than 1/2 when α > 3, for a signifi-
cant mismatch in loss (∆ = 0.1). Note that as we are
assuming a perfect homodyne detection scheme the
success probability will inherently be unity in this
case. Investigating imperfect homodyne detection
will be interesting as future work.

5 Conclusions

Crucial to this scheme is that the measurements out-
lined in Section 2.3 must be performed specifically
as stated (that is, a vacuum projection in mode B
and a homodyne detection in D). In doing so, one
can theoretically achieve high levels of entangle-
ment for low levels of photon loss. There are three
key points to this paper which are worth summaris-
ing once more:

• Having unequal loss does not significantly im-
pact the entanglement and fidelity values, and
the protocol is actually fairly resilient to this

• We can reach optimum entanglement, fidelity
and linear entropy for a specific value of the
amplitude (α) of the propagating coherent
states

• The most realistic (practical) case is a trans-
mission of T = 0.99, and a loss mismatch of
∆ = 0.01, resulting in an impressive entangle-
ment value of 0.87 for α ≈ 1.5

This work highlights the usefulness of entangled op-
tical hybrid states of light, and shows that the con-
tinuous variable part of this hybrid state is partic-
ularly resilient to low levels of photon losses. Fur-
thermore, if applied with a suitable entanglement
purification scheme, this protocol has the potential
to be implemented as part of a full quantum re-
peater protocol. Under the assumption of small
losses in a channel, the ES protocol could also be
used for entangling two distance superconducting
qubits. These can be entangled because the state
|ψHE〉 can easily be created between a supercon-
ducting qubit and a coherent state inside a super-
conducting circuit [47].

Further work includes investigating cat states
(coherent state superpositions) as the propagating
continuous variable in the hybrid state, and also in-
vestigating the impact of imperfect homodyne de-
tection to this entanglement swapping protocol.
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