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Abstract: In the classical world, the origin of physical information can, in principle, be traced and hence it
seems impossible to setup a secure way for message transmission without revealing its senders’ identity. Dining
cryptographers (DC) problem introduced by Chaum [1] is one of the primary attempts in this context. In a DC
problem, three cryptographers are curious to find out whether their agency NSA (U.S. National Security Agency) or
one of them pays for the dinner. At the same time they respect each other’s right to make an anonymous payment.
A generalized version of the DC problem called DC-net where one of the members from an agency publicizes a
secret message without revealing his identity [1]. An unconditionally secure DC-net requires pairwise shared (secure)
keys and an authenticated broadcast channel. Since, the security of DC-net relies on the generation of secure
key between pairs of members so it is not unconditionally secure if members are not allowed to pre-share bilateral
private keys. There are other serious flaws in the existing DC protocols e.g., multiple payments, collusion loophole etc.

Anonymous Veto (AV) [2] is also one of the basic primitive for the cryptographic problems like DC problem where
the main aim is to hide the identity of the senders of the messages. Here a group of jury members, who need to
take an unanimous decision, but at the same time want their individual decisions to remain secret i.e. without
ever disclosing the identity of possible vetoing member(s). This could be very important in many aspects of human
societies. Security of the classical solution of this problem is also based either on the computational hardness like other
classical cryptographic protocols or on imposing restrictions on the number of dishonest players [3]. In this context,
Boykin [4] provided a quantum protocol for sending classical information anonymously by distributing pairwise
shared EPR pairs1 among players. In 2005, Christandl and Wehner [5] proved that the protocol presented by Boykin
is not perfectly secure since it does not satisfy the traceless property and they provided an alternative quantum
scheme of the DC-type problem namely ‘Quantum Anonymous Transmissions (QAT)’ with the traceless feature.
In 2007, Brassard et.al. presented a more improved QAT protocol [6] and there are some recent works which have
also addressed the QAT problem [7]. In this context, following the method proposed by Christandl and Wehner [5]
for DC problem, we present a secure quantum protocol for AV problems by employing multi-qubit GHZ correlation [8].

GHZ paradox- In 1989, Greenberger, Horne and Zeilinger (GHZ) [8] provided a way to show a direct contradiction of
quantum mechanics with local realism without using any statistical inequality. A simplified version of their argument

is as follows: The three qubit maximally entangledstate |Ψ〉 = | 000〉 − | 111〉√
2

satisfies following relations

σx ⊗ σx ⊗ σx|Ψ〉 = (−1)|Ψ〉σx ⊗ σy ⊗ σy|Ψ〉 = (+1)|Ψ〉
σy ⊗ σx ⊗ σy|Ψ〉 = (+1)|Ψ〉σy ⊗ σy ⊗ σx|Ψ〉 = (+1)|Ψ〉, (1)

where, σx, σy, σz are the Pauli matrices. Whereas, no local realistic correlation can satisfy above four conditions
simultaneously. Hence, no local realistic theory can reproduce quantum correlations.

Quantum Dining Cryptographers (QDC) protocol - In a three-party QDC protocol [5], Alice, Bob and Charlie first
share a number (say L1) of copies of the GHZ state |Ψ〉, one qubit each from each copy. They randomly selects
some of the shared states and run GHZ paradox to check the genuineness of their shared states. The detail of the
genuineness check of GHZ state is discussed in the main paper. After confirmation of genuineness of the GHZ states
the protocol runs on rest of the copies as follows:

QDC-3: S1. Each member performs σz on his qubits if he wants to pay for the dinner otherwise does nothing.

∗Electronic address: ramijrahaman@gmail.com
1 two-qubit maximally entangled state 1√
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(i) If an even number (i.e. zero/two) of members pay the bill (i.e., apply σz) then the states of all the
members of L2 remain in the same GHZ state |Ψ〉 as

I⊗ I⊗ I|Ψ〉 = |Ψ〉; I⊗ σz ⊗ σz|Ψ〉 = |Ψ〉;
σz ⊗ I⊗ σz|Ψ〉 = |Ψ〉; σz ⊗ σz ⊗ I|Ψ〉 = |Ψ〉.

(ii) If an odd number (i.e. one/three) of members want to pay for the dinner, the states are transformed

to |Ψ⊥〉 = | 000〉+ | 111〉√
2

(which is orthogonal to |Ψ〉) as

σz ⊗ I⊗ I|Ψ〉 = |Ψ⊥〉; I⊗ σz ⊗ I|Ψ〉 = |Ψ⊥〉;
I⊗ I⊗ σz|Ψ〉 = |Ψ⊥〉; σz ⊗ σz ⊗ σz|Ψ〉 = |Ψ⊥〉.

S2. Randomly select a copy of the states to distinguish between the cases (i) even and (ii) odd no. of payment(s).
The distinguishability task between case (i) and case (ii) reduces to the problem of distinguishability
of two orthogonal three-qubit states |Ψ〉 and |Ψ⊥〉. This can be done by local operation and classical
communication [10] and this process in no way, reveals the identity of the operation of the players.

S3. Members randomly selects one of the run and perform the following to distinguish ‘no pay’ vs. ‘double pay’
in case (i) and ‘single pay’ vs. ‘triple pay’ in case (ii). If case (i) occurs, then each member measures σy

on his qubit if (s)he pays for the dinner otherwise measures σx. If the product of the local measurements
is −1 then no member has paid for the dinner (i.e., zero pay) and if the product is +1 then two members
have paid for the dinner (i.e., double pay). If zero pay occurs NSA will pay for the dinner and if double pay
occurs the payment will be cancelled.

In case (ii), each member measures σx on his qubit if (s)he pays for the dinner otherwise, measures σy.
If the product of the local measurements is +1 then all the three members have paid for the dinner (i.e.,
triple pay) and if the product is −1 then only one member has paid for the dinned (i.e., single pay). If a
single pay occurs payment will be accepted otherwise payment will be cancelled.

QDC-n: The generalized version of the QKD protocol with n-party starts with by sharing a large number of copies of
generalized n-qubit GHZ state among members

|Ψn〉 =
1√
2
[| 000 . . . 0〉 − | 111 . . . 1〉] . (2)

The above GHZ state has the following correlation:

σt̄
z|Ψn〉 =

1√
2

[

| 000 . . . 0〉 − (−1)t| 111 . . . 1〉
]

=
1√
2
[| 000 . . . 0〉 − | 111 . . . 1〉] = |Ψn〉 (if t is even),

=
1√
2
[| 000 . . . 0〉+ | 111 . . . 1〉] = |Ψ⊥

n 〉 (if t is odd), (3)

where σt̄
z denotes the case where σz acts on t-number of qubits and no action on rest of the qubits. For the

generalized DC problem with no multiple payments t = 0, 1. Same kind of protocol with step S1 and S2 as
described above will work in this case. By exploiting this generalized QDC protocol we now provide a secure
quantum protocol for the AV problem for odd number of parties. Extension the result for even number of parties
from odd case is quite trivial.

Quantum Anonymous Veto (QAV) protocol- Imagine a jury with n members, who need to take an unanimous decision,
but at the same time want their individual decisions to remain secret. The generalized GHZ state |Ψn〉 given in (2)
would allow them to achieve this. The quantum AV protocol starts with sharing L (L ≥ 2) genuinecopies of |Ψn〉
between jury members. Each member gets one qubit from each of the copy of |Ψn〉. Now the QAV protocol with odd
number of members goes as follows

S1′ Each member performs σz on his qubits if he wants to vote ‘against’ otherwise, does nothing.

(i) If an even number of members (including zero) vote ‘against’ the decision, all the states remain same as
|Ψn〉.

(ii) Otherwise, all the states transform to |Ψ⊥

n 〉.
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S2′ Jury members randomly select one copy of the state to distinguish between the cases (i) and (ii) by distinguishing
two orthogonal states [10]. Unanimity in favor of the decision happens only if no members (i.e. zero members)
voted against. Since, (ii) represents the case where at least one of the members voted against so it does not
require any farther analysis. But, case (i) represents (a) the unanimity ‘in favor’ of the decision and (b) an even
number (2, 4, . . .) of members voted against the decision.

S3′ To distinguish between subcases (a) and (b) they first randomly select one copy of the state and each member

performs (again) the unitary operation σz(1) =

(

1 0
0 cos π

2
+ i sin π

2

)

on his qubit if he is ‘against’ the decision,

otherwise does nothing.

(i) If the number (including zero) of members against the decision is even multiple of 2 (i.e., multiple of 22)
then the selected state will remain in |Ψn〉.

(ii) Otherwise, (i.e., the number of members against the decision is odd multiple of 2) it will transform to
|Ψ⊥

n 〉.
After distinguishing between these two cases, further analysis has to be made for case (i) in S3′. Case (i)
represents (1a) the unanimity in favor of the decision and (1b) multiple of 22 (i.e., 4, 8, 12, 16, 20, . . .) no. of
members voted against the decision.

Jury members keep repeating these steps. In general, to distinguish the case of even multiple of 2t no. of
members (including zero) and the odd multiple of 2t no. of members against the decision, the required unitary

operation will be σz(t) =

(

1 0
0 cos π

2t
+ i sin π

2t

)

. Since, the total number of jury members are finite so after a

finite number of steps they can detect whether there is any unanimity ‘in favor’ of the decision.

If the number of jury members n(> 2) is even then members share copies of |Ψn+1〉 where one (say, first) of the
jury members holds two qubits from each copy. Except the first, all the other members follow the similar protocol as
described above. The first member treats his first qubit as earlier i.e., performs operation/measurement according
to his choice of decision and on the second qubit he always performs the operations according to decision ‘in favor’.
Obviously, this arrangement does not provide any advantage to the first member and hence does not effect the
objectivity of the protocol.

The security of our QAV protocol is based on the properties of the correlations of GHZ (2) and its variant (3).
The complementary correlation coming from GHZ and its variant are playing a vital role in discriminating various
cases that arise in AV. The protocol to check the genuineness of the GHZ state by exploiting the non-local properties
of |Ψn〉 are described in main paper. One should note that in contrast to DC problem and other existing quantum
anonymous transmissions (QAT) problems [5, 6], the goal of the AV problem is quite different. The existing QAT
protocols need prior secure quantum and classical channels and still lack inclusive security proof. On the other hand,
in the quantum AV protocol, the security can be guaranteed by sharing quantum resources only.
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Anonymous Veto (AV) is one of the basic primitive for the cryptographic problems like Dining
cryptographers (DC) where the main aim is to hide the identity of the senders of the messages. It
can be achieved by classical methods where the security is based either on computational hardness
or on shared private keys. In this regard, we present a secure quantum protocol for the AV problem
by exploiting the GHZ correlations. First, we solve a generalized version of the DC problem with
the help of multiparty GHZ state. This allow us to provide a secure quantum protocol for the AV.
Security of our protocol rely on some novel and fundamental features of GHZ correlations related
to quantum nonlocality.
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I. INTRODUCTION

In the classical world, the origin of physical informa-
tion can, in principle, be traced and hence it seems im-
possible to setup a secure way for message transmission
without revealing its senders’ identity. Dining cryptog-
raphers (DC) problem introduced by Chaum [1] is one
of the primary attempts in this context. In a DC prob-
lem, three cryptographers are curious to find out whether
their agency NSA (U.S. National Security Agency) or one
of them pays for the dinner. At the same time they re-
spect each other’s right to make an anonymous payment.
A generalized version of the DC problem called DC-net
where one of the members from an agency publicizes a
secret message without revealing his identity [1]. An
unconditionally secure DC-net requires pairwise shared
(secure) keys and an authenticated broadcast channel.
Since, the security of DC-net relies on the generation of
secure key between pairs of members so it is not uncondi-
tionally secure1 if members are not allowed to pre-share
bilateral private keys. Another major flaw of the existing
DC protocol is that, it can not discriminate among var-
ious cases of multiple payments. For example, it shows
zero pay i.e. no transmission of message if even num-
ber (0, 2, . . .) of members pay for the dinner and detects
payment if an odd (1, 3, . . .) number of members pay for
the dinner. There is another loophole in the DC protocol
namely collusion loophole where some of the participants
may cooperate among themselves to trace the person who
pays. There are some works that partially resolve the
problems related to multiple payments and the collusion
problem but none of them provides an unconditionally
secure solution [2–4].

There is a variant of DC problem popularly known
as Anonymous Veto (AV) problem [5]. Here a group of

∗ ramijrahaman@gmail.com
† gkar@isical.ac.in
1 security based on computational hardness of same nature as clas-
sical key distribution protocol.

jury members, who need to take an unanimous decision,
but at the same time want their individual decisions to
remain secret i.e. without ever disclosing the identity
of possible vetoing member(s). This could be very im-
portant in many aspects of human societies. Security
of the classical solution of this problem is also based
either on the computational hardness like other classi-
cal cryptographic protocols or on imposing restrictions
on the number of dishonest players [6]. In this context,
Boykin [7] provided a quantum protocol for sending clas-
sical information anonymously by distributing pairwise
shared EPR pairs2 among players. In 2005, Christandl
and Wehner [8] proved that the protocol presented by
Boykin is not perfectly secure since it does not satisfy the
traceless property and they provided an alternative quan-
tum scheme of the DC-type problem namely ‘Quantum
Anonymous Transmissions (QAT)’ with the traceless fea-
ture. In 2007, Brassard et.al. presented a more improved
QAT protocol [9] and there are some recent works which
have also addressed the QAT problem [10]. In this con-
text, following the method proposed by Christandl and
Wehner [8] for DC problem, we present a secure quantum
protocol for AV problems by employing multi-qubit GHZ
correlation [11].
We start with a brief description of the GHZ paradox

and a quantum protocol for the three-party DC problem
based on three qubit GHZ correlation with a detection of
multiple payments. We then describe an extension of the
protocol to n-party DC problem without any detection
of multiple payments. By exploiting this generalized ver-
sion of DC problem, finally we demonstrate a quantum
protocol for the AV problem.

II. GHZ PARADOX

In 1989, Greenberger, Horne and Zeilinger (GHZ) [11]
provided a way to show a direct contradiction of quantum

2 two-qubit maximally entangled state 1√
2
[| 00〉 − | 11〉]
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mechanics with local realism without using any statistical
inequality. Consider a three qubit maximally entangled3

|Ψ〉 = | 000〉 − | 111〉√
2

(1)

known as GHZ states. This GHZ state satisfies the fol-
lowing four relations;

σx ⊗ σx ⊗ σx|Ψ〉 = (−1)|Ψ〉
σx ⊗ σy ⊗ σy|Ψ〉 = (+1)|Ψ〉
σy ⊗ σx ⊗ σy|Ψ〉 = (+1)|Ψ〉
σy ⊗ σy ⊗ σx|Ψ〉 = (+1)|Ψ〉,

(2)

where, σx, σy, σz are the Pauli matrices. Then, one can
easily show that the above four constraints cannot be
satisfied simultaneously by any local-realistic (LR) the-
ory [11, 12]. Similarly, for another three-qubit GHZ state

|Ψ⊥〉 = | 000〉+ | 111〉√
2

(3)

we have,

σx ⊗ σx ⊗ σx|Ψ⊥〉 = (+1)|Ψ⊥〉
σx ⊗ σy ⊗ σy|Ψ⊥〉 = (−1)|Ψ⊥〉
σy ⊗ σx ⊗ σy|Ψ⊥〉 = (−1)|Ψ⊥〉
σy ⊗ σy ⊗ σx|Ψ⊥〉 = (−1)|Ψ⊥〉.

(4)

Like the previous case, the above correlation also cannot
be satisfied simultaneously by any LR theory.

III. QUANTUM DINING CRYPTOGRAPHERS
(QDC) PROTOCOL

First we describe the simplest case of QDC protocol[8].
Imagine that three cryptographers Alice, Bob and Char-
lie participate in the Dining Cryptographers (DC)
problem. They first share a number (say L1) of copies
of the GHZ state |Ψ〉 given in (1), one qubit each from
each copy. Here a copy of the states corresponds to a run
of the protocol. Onward we use both the notations copy
of the state or run of the protocol synonymously. After
receiving all the qubits from L1 copies of GHZ states
they randomly select some runs (say L2) and check
whether the selected states satisfy the GHZ paradox or
not. If yes, rest of the shared states (say, L = L1 r L2)
are genuine copies of GHZ state (1). The detail of the
genuineness check of GHZ state is discussed later. After
confirmation of genuineness of the states the protocol

3 this entanglement is maximal in the sense that it gives the max-
imum violation of Bell’s inequality for a given set of observables

runs as follows:
Protocol: QDC(3)

S1. Each member performs σz on his qubits if he wants

to pay for the dinner otherwise does nothing.

S2. Randomly select a copy of the states to distinguish

between the cases (i) even and (ii) odd no. of payment(s).

S3. Distinguish ‘no pay’ vs. ‘double pay’ in case (i)

and ‘single pay’ vs. ‘triple pay’ in case (ii).

S1: Performing local unitary operation to encode pay-
ment: Alice performs local unitary operation σz

on each of her qubits from L if she wishes to pay
the dinner. Otherwise, she does nothing. Bob and
Charlie follow the same.

(i): If an even number (i.e. zero/two) of members
pay the bill (i.e., apply σz) then the states
of all the members of L2 remain in the same
GHZ state (1) as

I⊗ I⊗ I|Ψ〉 = |Ψ〉; I⊗ σz ⊗ σz|Ψ〉 = |Ψ〉;
σz ⊗ I⊗ σz|Ψ〉 = |Ψ〉; σz ⊗ σz ⊗ I|Ψ〉 = |Ψ〉.

(ii): If an odd number (i.e. one/three) of mem-
bers want to pay for the dinner, the states are
transformed to |Ψ⊥〉 given in (3) as

σz ⊗ I⊗ I|Ψ〉 = |Ψ⊥〉; I⊗ σz ⊗ I|Ψ〉 = |Ψ⊥〉;
I⊗ I⊗ σz|Ψ〉 = |Ψ⊥〉; σz ⊗ σz ⊗ σz|Ψ〉 = |Ψ⊥〉.

S2: Distinguishing case (i) and case (ii): To distinguish
between case (i) and case (ii), members randomly
select one of the run (say r1-th) from L. Now the
task is to identify the state (|Ψ〉 or |Ψ⊥〉) corre-
sponding to the run r1. Thus, the distinguishabil-
ity task between case (i) and case (ii) reduces to
the problem of distinguishability of two orthogonal
three-qubit states |Ψ〉 and |Ψ⊥〉. This can be done
by local operation and classical communication [13]
and this process in no way, reveals the identity of
the operation of the players.

Now the task is to distinguish between subcases
‘zero pay’ vs. ‘double pay’ for case (i) and ‘single
pay’ vs. ‘triple pay’ for case (ii).

S3: Distinguishing between subcases: Members randomly
selects one of the run (say r2-th) from L r {r1}.
If case (i) occurs in the previous step then each
member measures σy on his qubit if (s)he pays for
the dinner otherwise measures σx. If the product
of the local measurements is −1 then no member
has paid for the dinner (i.e., zero pay) and if the
product is +1 then two members have paid for the
dinner (i.e., double pay). The first case follows from
the top equation of (2) whereas, the second case
follows from the last three equations of (2). If zero
pay occurs NSA will pay for the dinner and if double
pay occurs the payment will be cancelled.
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In case (ii), each member measures σx on his qubit
if (s)he pays for the dinner otherwise, measures σy.
If the product of the local measurements is +1 then
all the three members have paid for the dinner (i.e.,
triple pay) and if the product is −1 then only one
member has paid for the dinned (i.e., single pay).
The first case follows from the first equation of (4)
whereas, the second case follows from the last three
equations of (4). If a single pay occurs payment will
be accepted otherwise payment will be cancelled.

Obviously, two copy of the states, one copy for each step,
are sufficient. Therefore, it is enough if the list L con-
tains just two runs. This is true only if all the members
honestly follow the entire protocol i.e., perform local uni-
tary operations or measurements (consistently) whenever
asked according to their action and declare the true out-
comes for each such measurement. If they act dishon-
estly, they do it solely to trace payer(s) identity only,
and not to create any confusion regarding payment. The
member who announces his results last in both the steps
S2 and S3 enjoys some advantage. (S)He may change
the case by just sending a flipped result of her/his mea-
surement outcome. To deal with this problem, mem-
bers choose more than one run in both steps S2 and S3
and the ordering of the announcement of the result is
made random for each such selected run in both steps.
Therefore, no members gets the advantage of being last
to announce and if someone still flips the result, that will
lead to an inconsistent conclusion and subsequently, they
abort the protocol and starts a new one with a fresh set
of resources.

A. Security analysis of QDC protocol

Since the payer(s) action in step S1 is encoded inside
the phase of the GHZ state and the state being party
symmetric, no quantum operation can reveal the identity
of the payer(s). Step S2 only discloses the information
whether the number of payers is odd or even. This in-
formation in no way harm the purpose, rather it helps
to detect multiple payments. In step S3 members only
reveal their individual measurement result and not the
choice of measurement to identify the ‘no pay’ in case of
(i) and a ‘single pay’ in case of (ii). By knowing measure-
ment result one cannot predict the measurement choice
as that would immediately imply a violation of causality
principle. Of course, if two of the members cooperate
with each other then they can certainly predict the mea-
surement choice and hence the action of the third party
by knowing the measurement result. But this is quite
obvious, since the anonymity exists only among a set of
possible performers, and if the set is singleton, its mem-
ber is always traceable i.e., no protocol can keep the
singleton members set untraceable. In our QDC proto-
col if the payment is accepted i.e. a ‘single pay’ hap-
pens then no non-payer have any information about the
payer. But, in case of rejection of payment the identity

of payers may be disclosed in two cases (i) if the ‘dou-
ble payment’ occurs then the non-payer knows that the
other two members are the payers. This can be avoided
if we assume that payment is made by one member only
like the original DC problem and then the protocol will
end at step S2. Based on the assumption that multiple
payments will never occur, one can easily generalize our
QDC protocol for n(≥ 3) number of members.

B. Generalized QDC protocol

Let a group of n cryptographers are sitting for dinner
at a restaurant and they want to find out whether their
agency NSA or one of them pays for the dinner, while
respecting each other’s right to make a payment anony-
mously. To implement the protocol n-cryptographers
share a copy of the generalized n-qubit GHZ state

|Ψn〉 =
1√
2
[| 000 . . . 0〉 − | 111 . . . 1〉] . (5)

The above GHZ state has the following correlation:

σt̄
z|Ψn〉 =

1√
2

[

| 000 . . . 0〉 − (−1)t| 111 . . . 1〉
]

=
1√
2
[| 000 . . . 0〉 − | 111 . . . 1〉] = |Ψn〉

(if t is even),

=
1√
2
[| 000 . . . 0〉+ | 111 . . . 1〉] = |Ψ⊥

n 〉

(if t is odd), (6)

where σt̄
z denotes the case where σz acts on t-number of

qubits and no action on rest of the qubits. For the gen-
eralized DC problem with no multiple payments t = 0, 1.
Same kind of protocol with step S1 and S2 as described
above will work in this case. By exploiting this gener-
alized QDC protocol we now provide a secure quantum
protocol for the AV problem for odd number of parties.
Then we extend the result for even number of parties.

IV. QUANTUM ANONYMOUS VETO (QAV)
PROTOCOL

Imagine a jury with n members, who need to take an
unanimous decision, but at the same time want their in-
dividual decisions to remain secret. The generalized GHZ
state |Ψn〉 given in (5) would allow them to achieve this.
The quantum AV protocol starts with sharing L (L ≥ 2)
genuine4 copies of |Ψn〉 between jury members. Each
member gets one qubit from each of the copy of |Ψn〉.

4 To check the genuineness of states they randomly select some
copies of them and run the GHZ-type paradox as described in
section V.
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Protocol: QAV (odd-n)

S1’. Each member performs σz on his qubits if he

wants to vote ‘against’ otherwise, does

nothing.

S2’. All perform measurement of σx on their

associated to a selected run to distinguish between

the cases (i) even (including zero) and (ii) odd no.

of ‘against’ votes.

S3’. For case (i), distinguish between the cases of

(a) unanimity ‘in favor’ and (b) an even

(excluding zero) no. of ‘against’ votes.

S1’: After receiving all the qubits, each member per-
forms the unitary operation σz if he is ‘against’ the
decision and does nothing if he is ‘in favor’. (i) If
an even number of members (including zero) vote
‘against’ the decision, all the states remain same
as |Ψn〉. (ii) Otherwise, all the states transform to
|Ψ⊥

n 〉.

S2’: Jury members randomly select one copy of the state
to distinguish between the cases (i) and (ii) by dis-
tinguishing two orthogonal states [13]. Unanimity
in favor of the decision happens only if no mem-
bers (i.e. zero members) voted against. Since, (ii)
represents the case where at least one of the mem-
bers voted against so it does not require any farther
analysis. But, case (i) represents (a) the unanimity
‘in favor’ of the decision and (b) an even number
(2, 4, . . .) of members voted against the decision.

S3’: To distinguish between subcases (a) and (b) they
first randomly select one copy of the state and
each member performs (again) the unitary oper-

ation σz(1) =

(

1 0

0 cos π
2
+ i sin π

2

)

on his qubit

if he is ‘against’ the decision, otherwise does noth-
ing. (i) If the number (including zero) of members
against the decision is even multiple of 2 (i.e., mul-
tiple of 22) then the selected state will remain in
|Ψn〉. (ii) Otherwise, (i.e., the number of members
against the decision is odd multiple of 2) it will
transform to |Ψ⊥

n 〉.
After distinguishing between these two cases, fur-
ther analysis has to be made for case (i) in S3.

Case (i) represents (1a) the unanimity in favor
of the decision and (1b) multiple of 22 (i.e.,
4, 8, 12, 16, 20, . . .) no. of members voted against
the decision.

To distinguish between subcases (1a) and (1b),
they again select another copy and each party
perform the following unitary operation σz(2) =
(

1 0

0 cos π
22

+ i sin π
22

)

on his respective qubit if he

is ‘against’ the decision, otherwise does nothing. If

an even multiple of 22 no. (i.e., multiple of 23) of
members (including zero) are against the decision
the copy remains unchanged. Otherwise, (i.e., an
odd multiple of 22 no. of members excluding zero
are against the decision) the copy transforms to
|Ψ⊥

n 〉. Again these two cases can be distinguished
by distinguishing the two orthogonal states.

Jury members keep repeating these steps. In gen-
eral, to distinguish the case of even multiple of
2t no. of members (including zero) and the odd
multiple of 2t no. of members against the deci-
sion, the required unitary operation will be σz(t) =
(

1 0

0 cos π
2t

+ i sin π
2t

)

. Since, the total number of

jury members are finite so after a finite number of
steps they can detect whether there is any unanim-
ity ‘in favor’ of the decision.

Note that in the entire protocol the identity of the
member giving veto(es) is not revealed. The thing
that is revealed is the information regarding the
number of vetoes. Here also the security is guaran-
teed from the genuineness of the GHZ states.

If the number of jury members n(> 2) is even then mem-
bers share copies of |Ψn+1〉 where one (say, first) of the
jury members holds two qubits from each copy. Here, ex-
cept the first jury member all the other members follow
the similar protocol as described in case of odd no. of
members. In each run, the first member treats the first
qubit (from the pair of qubits he received at each run)
as earlier i.e., performs operation/measurement accord-
ing to his choice of decision and on the second qubit he
always performs the operations according to decision ‘in
favor’. Obviously, this arrangement does not provide any
advantage to the first member and hence does not effect
the objectivity of the protocol.

V. GENUINENESS CHECK OF GHZ STATE

Security of all the protocols described above is
solemnly dependent on the genuineness of the corre-
sponding GHZ state. Since, one can construct a secure
even (n−1)-parties QAV protocol from an odd n-parties
QAV protocol, it is sufficient to describe only the gen-
uineness check of GHZ states for odd n.
Let us consider the following n+ 1 operators

O0 = σ1
x ⊗ · · · ⊗ σi−1

x ⊗ σi
x ⊗ σi+1

x ⊗ σi+1
x ⊗ · · · ⊗ σn

x and

Oi = σ1
x ⊗ · · · ⊗ σi−1

x ⊗ σi
y ⊗ σi+1

y ⊗ σi+1
x ⊗ · · · ⊗ σn

x ,

for i = 1, 2, · · · , n with the convention n + 1 ≡ 1. The
upper indices on Pauli matrices represent the identity of
position. One can easily check that the set of operators
{Oi}ni=0 satisfy the following eigenvalue equations

Oi|Ψn〉 = λi|Ψn〉, (7)
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where λi = −1 if Oi = O0 otherwise, λi = +1. Now and
onwards {O}i, i 6= 0 will imply that the i and i + i-th
party measure σy and the rest measure σx.

To check the genuineness of n(odd)-qubit GHZ state
each player randomly selects a run r and correspond-
ingly a tr from {0, 1, 2, · · · , n} and ask all the players to
measure their qubit associated with the r-th run in Otr

and send back their measurement results.
Concerning player collects all the local measurement

data (including his won measurement result) associated
with the run r and checks whether the product of the
local measurement results consistent with the eigenvalue
λtr of the eigenvalue equation (7). This process will be re-
peated until all the players are satisfied. Relations given
in (7) provide a GHZ like contradiction with LR-theory
for an n-qubit system when n is odd. By employing re-
lations given in (7), one can construct the following LR
inequality for n-(odd) two level system.

O =

∣

∣

∣

∣

∣

〈

n
∑

i=1

Oi −O0

〉∣

∣

∣

∣

∣

≤ (n− 1). (8)

The two extreme eigenvalues of the operator
(
∑n

i=1 Oi −O0) are ±(n + 1) and the corresponding
eigenstates are |Ψn〉 and |Ψ⊥

n 〉 respectively. Therefore,
only for |Ψn〉 and |Ψ⊥

n 〉, the maximum algebraic value
of O i.e., O is equal to n + 1, and hence violates the
inequality (8) maximally. Thus, for odd n the relations
given in (7) uniquely determines the correlation of |Ψn〉.
Therefore, if the product of the local measurement

results associated to the observable Otr is equal to the
eigenvalue λtr then the correlation is a genuine n-qubit
GHZ correlation.

VI. CONCLUSION

In conclusion, we present a secure quantum protocols
for the Anonymous Veto (AV) problem. The security of
our protocol is based on the properties of the correlations
of GHZ (5) and its variant (6). The complementary cor-
relation coming from GHZ and its variant are playing
a vital role in discriminating various cases that arise in
AV. We also provide a protocol to check the genuineness
of the GHZ state by exploiting the nonlocal properties.
One should note that in contrast to DC problem and
other existing quantum anonymous transmissions (QAT)
problems [8, 9], the goal of the AV problem is quite dif-
ferent. The existing QAT protocols need prior secure
quantum and classical channels and still lack inclusive
security proof. On the other hand, in the quantum AV
protocol, the security can be guaranteed by sharing quan-
tum resources only.

VII. ACKNOWLEDGMENTS

We thank Sibasish Ghosh, Marek Żukowski and
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