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Secure two-party computation

Two parties jointly compute an arbitrary function on their inputs without

sharing the values of their inputs with the other

Classical
Oblivious Transfer⇒ Bit Commitment ⇒ Coin Flipping

Perfect security impossible without extra assumptions (e.g.

computational hardness)

Quantum
Oblivious Transfer⇔ Bit Commitment ⇒ Coin Flipping

Perfect security is impossible (non-relativistic)

Quantum weak coin �ipping is the strongest known

primitive with arbitrarily perfect security



Coin �ipping1

over the telephone

Two distrustful parties, Alice and Bob, wish to remotely

generate an unbiased random bit.

I Strong Coin Flipping (SCF)

The parties do not know a priori the preferred outcome of

the other

I Weak Coin Flipping (WCF)

The parties have a priori known opposite preferred

outcomes

1M. Blum, SIGACT News 15.1, pp.23-27 (1983).



Protocol features

Honest is a player who follows the protocol exactly as

described.

A B Feature Pr(A wins) Pr(B wins)

Honest Honest Correctness PA = 1/2 PB = 1/2
Cheats Honest A can bias P ∗

A 1− P ∗
A

Honest Cheats B can bias 1− P ∗
B P ∗

B

Cheats Cheats No protocol � �

A protocol has bias ε if neither player can force their desired

outcome with probability higher than 1
2 + ε, i.e. the bias is the

smallest ε such that P ∗A, P
∗
B ≤

1
2 + ε.



Bounds and best explicit protocols

Classical

Completely insecure ε = 1
2 , unless extra assumptions are made

Quantum

Bound Protocol

SCF ε ≥ 1√
2
− 1

2

1
ε→ 1√

2
− 1

2

2
and ε = 1

4

3

WCF ε→ 04,5 ε = 1
10

6
, numerically ε→ 06
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Protocol description

A new framework is needed permitting us to �nd both the

protocol and its bias.



Time-dependent point games∗ (TDPG)

Sequence of frames including points on x− y plane with

probability weights assigned

I Starting points: (0, 1) and (1, 0) with
p = 1/2.

I Transitions between frames:∑
z

pz =
∑
z′

pz′

∑
z

λz

λ+ z
pz ≤

∑
z′

λz′

λ+ z′
pz′ , ∀λ ≥ 0

I Final point (β, α) with p = 1.

∗ Mochon in arXiv:0711.4114 attributes the point-game formalism to A. Y. Kitaev.



Examples of allowed moves



Transitions expressible by matrices (EBM)

Consider a Hermitian matrix Z ≥ 0 and let Π[z] be the projector on the
eigenspace of the eigenvalue z. Then Z =

∑
z zΠ

[z]. Let |ψ〉 be a vector
(not necessarily normalised). We de�ne the function
Prob[Z, |ψ〉] : [0,∞)→ [0,∞) with �nite support as

Prob[Z, |ψ〉](z) =

{
〈ψ|Π[z]|ψ〉 if z ∈ spectrum(Z)

0 otherwise.

Let g, h : [0,∞)→ [0,∞) be two functions with �nite supports. The line
transition g → h is called EBM if there exist two matrices 0 ≤ G ≤ H and
a vector |ψ〉 such that:

g = Prob[G, |ψ〉] and h = Prob[H, |ψ〉].

For each EBM TDPG there exists a WCF protocol with

P ∗A ≤ α, P ∗B ≤ β.



Time-independent point games (TIPG)

For an EBM transition g → h, we de�ne the EBM function

g − h.

The set of EBM functions is the same (up to closures) as the set

of valid functions.

A function f(x) is valid if
∑

x f(x) = 0 and
∑

x
f(x)
λ+x ≤ 0, ∀λ ≥ 0.

For each TIPG there exists an EBM TDPG with the

same �nal frame



Existence of a WCF protocol with ε→ 01

Family of TIPG2 approaching

bias

ε =
1

4k + 2
,

where 2k is the number of

points involved in the main

move of the point game

1C. Mochon, arXiv:0711.4114 (2007).

2Picture from P. Høyer and E. Pelchat, MA thesis, University of Calgary (2013).



Equivalent frameworks and the proof of existence1,2

1C. Mochon, arXiv:0711.4114 (2007).

2D. Aharonov, A. Chailloux, M. Ganz, I. Kerenidis and L. Magnin, SIAM J Comp 45.3, pp.

633-679 (2016).



TDPG-to-explicit-protocol framework (TEF)1

Conversion of a TDPG to an explicit WCF protocol with the corresponding

bias, given that for every transition of the TDPG, a unitary satisfying

certain constraints can be found

1A. S. Arora, J. Roland and S. Weis, 51st ACM SIGACT STOC, pp. 205-216 (2019).



TEF constraints

U is a unitary∗ matrix acting on span{|g1〉 , |g2〉 , . . . , |h1〉 , |h2〉 , . . .}, s. t.

U |v〉 = |w〉 and

nh∑
i=1

xhi |hi〉 〈hi|−
ng∑
i=1

xgiEhU |gi〉 〈gi|U †Eh ≥ 0,

with |v〉 :=
∑

i
√
pgi |gi〉√∑
i pgi

and |w〉 :=

∑
i
√

phi
|hi〉√∑

i phi

,
{
{|gi〉}

ng

i=1, {|hi〉
nh
i=1}

}
orthonormal and Eh :=

∑n
i=1 |hi〉 〈hi|. Also, xgi and xhi

are the coordinates of

the ng and nh points of the initial and �nal frame, respectively, with

corresponding probability weights pgi and phi

Using TEF1 a protocol with ε = 1
10

was constructed analytically and an

algorithm was proposed to numerically construct U for lower bias

∗ it is su�cient to consider orthogonal matrices

1A. S. Arora, J. Roland and S. Weis, 51st ACM SIGACT STOC, pp. 205-216 (2019).



f− assignment1

Given a set of real coordinates 0 ≤ x1 < x2 · · · < xn and a polynomial of degree at

most n− 2 satisfying f(−λ) ≥ 0 for all λ ≥ 0, an f-assignment is given by the

function

t =

n∑
i=1

−f(xi)∏
j 6=i(xj − xi)︸ ︷︷ ︸

=:pi

[xi] = h− g,

where h contains the positive part of t and g the negative part (without any
common support), viz. h =

∑
i:pi>0 pi [xi] and g =

∑
i:pi<0 (−pi) [xi].

I An assignment is balanced if the number of points with negative weights,
pi < 0, equals the number of points with positive weights, pi > 0. An
assignment is unbalanced if it is not balanced.

I When f is a monomial, viz. has the form f(x) = cxq , where c > 0 and q ≥ 0,
we call the assignment a monomial assignment.

I A monomial assignment is aligned if the degree of the monomial is an even
number (q = 2(b− 1), b ∈ N). A monomial assignment is misaligned if it is
not aligned.

1C. Mochon, arXiv:0711.4114 (2007).



The f−assignment as a sum of monomial assignments

Consider a set of real coordinates satisfying 0 ≤ x1 < x2 · · · < xn
and let f(x) = (r1 − x)(r2 − x) . . . (rk − x) where k ≤ n− 2. Let
t =

∑n
i=1 pi [xi] be the corresponding f -assignment.

Then

t =

k∑
l=0

αl

(
n∑
i=1

−(−xi)l∏
j 6=i(xj − xi)

[xi]

)
,

where αl ≥ 0.

More precisely, αl is the coe�cient of (−x)l in f(x).



Solving an assignment

Given an f− assignment t =
∑nh

i=1 phi [xhi ]−
∑ng

i=1 pgi [xgi ] and
an orthonormal basis

{
|g1〉 , |g2〉 . . .

∣∣gng

〉
, |h1〉 , |h2〉 . . . |hnh

〉
}
,

we say that the orthogonal matrix O solves t if

O |v〉 = |w〉 and Xh ≥ EhOXgO
TEh,

where |v〉 =
∑ng

i=1
√
pgi |gi〉, |w〉 =

∑nh
i=1
√
phi |hi〉,

Xh =
∑nh

i=1 xhi |hi〉 〈hi|, Xg =
∑ng

i=1 xgi |gi〉 〈gi| and
Eh =

∑nh
i=1 |hi〉 〈hi|.

Moreover, we say that t has an e�ective solution if t =
∑

i∈I t
′
i

and t′i has a solution for all i ∈ I, where I is a �nite set.

4 types of monomial assignments: balanced/unbalanced � aligned/misaligned



Analytic solution
Balanced and aligned monomial assignments

Let m = 2b ∈ Z, t =
∑n

i=1 x
m
hi
phi

[
xhi

]
−
∑n

i=1 x
m
gi
pgi [xgi ] a monomial

assignment over 0 < x1 < x2 · · · < x2n, {|h1〉 , |h2〉 . . . |hn〉 , |g1〉 , |g2〉 . . . |gn〉} an
orthonormal basis, and

Xg :=
n∑

i=1

xgi |gi〉 〈gi|
.
= diag(0, 0, . . . 0︸ ︷︷ ︸

n zeros

, xg1 , xg2 . . . xgn ),

Xh :=
n∑

i=1

xhi
|hi〉 〈hi|

.
= diag(xh1

, xh2
. . . xhn , 0, 0 . . . 0︸ ︷︷ ︸

n zeros

),

|v〉 :=
n∑

i=1

√
pgi |gi〉

.
= (0, 0, . . . 0︸ ︷︷ ︸

n zeros

,
√
pg1 ,
√
pg2 . . .

√
pgn )T and

∣∣v′〉 := (Xg)b |v〉 .

|w〉 :=
n∑

i=1

√
phi
|hi〉

.
= (
√
ph1

,
√
ph2

. . .
√
phn , 0, 0, . . . 0︸ ︷︷ ︸

n zeros

)T and
∣∣w′〉 := (Xh)b |w〉 ,



Analytic solution
Balanced and aligned monomial assignments

Then,

O :=

n−b−1∑
i=−b

(
Π⊥hi

(Xh)i |w′〉 〈v′| (Xg)iΠ⊥gi
√
chi

cgi
+ h.c.

)

satis�es
Xh ≥ EhOXgO

TEh and EhO
∣∣v′〉 =

∣∣w′〉 ,
where Eh :=

∑n
i=1 |hi〉 〈hi|, chi

:= 〈w′| (Xh)iΠ⊥hi
(Xh)i |w′〉, and

Π
⊥
hi

:=


projector orthogonal to span{(Xh)−|i|+1

∣∣w′〉 , (Xh)−|i|+2
∣∣w′〉 . . . , ∣∣w′〉} i < 0

projector orthogonal to span{(Xh)−b
∣∣w′〉 , (Xh)−b+1

∣∣w′〉 , . . . (Xh)i−1
∣∣w′〉} i > 0

I i = 0.

Analogous are the forms of Π⊥gi and cgi .

The expressions for the solution O for the other possible types

of monomial assignments are similar



Analytic solution
Balanced and aligned monomial assignments



Summary and conclusions

I Analytical construction of WCF protocols with arbitrarily

close to zero bias

I Our approach is simpler as it avoids the � quite technical �

reduction of the problem from EBM to valid functions

I Analytical solutions in fewer dimensions?



Open questions

I Protocols for the Pelchat-Høyer family1 of point games?

I Given the recent bound on the rounds of communication2,

can we �nd protocols matching the bounds on resources?

I Noise robustness of the protocols.

I Device independent protocols3

1P. Høyer and E. Pelchat, MA thesis, University of Calgary (2013).
2C. A. Miller, 52nd ACM SIGACT STOC, pp. 916-929 (2020).

3N. Aharon, A. Chailloux, I. Kerenidis, S. Massar, S. Pironio and J. Silman, 6th TQC (2011).
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