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Summary

Decoy-state quantum key distribution (QKD) is a popular method to approximately achieve the performance of ideal single-photon sources by means of
simpler and practical laser sources. In high-speed decoy-state QKD systems, however, intensity correlations between succeeding pulses leak imnformation
about the users’ intensity settings, thus invalidating a key assumption of this approach. Here, we solve this pressing problem by developing a general
technique to Incorporate arbitrary intensity correlations to the security analysis of decoy-state QKD. This technique only requires to experimentally quantify
two main parameters: the correlaion range and the maximum relative deviaion between the selected and the actually emitted Intensities. As a side
contribution, we provide a non-standard derivation of the asymptotic secret key rate formula from the non-asymptotic one, In so revealing a necessary
condition for the significance of the former.

2. Main analytical result

1. Characterizing the mtensity correlations

NOTATION CENTRAL IDEA

1ngs selected up to round k)

The main 1dea 1s to pose a restricion on the maximum bias that Eve can
induce between the mn-photon yields and errors associated to different
intensity settings, 1n so enabling the application of the decoy-state method.
Fundamentally, the restriction follows from the indistinguishability of non-
orthogonal quantum states, captivated by what we call “the Cauchy-Schwarz

a, = aa, ...a; (record of intensity set
a;, (actually emitted mntensity in round k)

In full generality, a; 1s a continuous random variable whose probability
distribution, g, (ay), is fixed by the record of settings d,.

constraint”.
PHYSICAL ASSUMPTIONS ON THE CORRELATIONS
QUANTITATIVE BOUNDS
Assumption 1. The photon-number statistics of the source conditioned on the
value of the actual mtensity, @y, are poissonian: In what follows, we refer to the standard polarizaton encoding BB84
() = e Mkay "tk | protocol. Precisely, for any given round k, photon number n, itensity seting
. | n;.{! ) ¢ and bit value 7, we define the yield and the error probability as Yn(,’z) =
Assumption 2. For all possible records of settings, dy,, p(k) (click|n, ¢, Z, Z) and H1(1kc)r p(k) (click|n, ¢, X, X, 1), respectively. Also,
1— Z—z < Omax- note that we are conditioning here to comncident basis choices by Alice and

Bob ( Z or X). Then, for any two distinct mntensity settings a and b, one can
show that their yields and error probabilities satisty

G (erk) § ) Y(k)<G+ (erk) 3 )

a’ ab,n — "n,b a’ ab,n

That is to say, ay € [ag,a;] with a = a;, (1 + 61ax), Where §45 18 the
maximum relative deviation of the actual intensity with respect to 1ts setting.

From assumptions 1 and 2, 1t follows that
+
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ay L3 G (va,cz,r’ Tflb,n) = H‘I(l,b) <G4 (Hr(t,cz,r' szb,n)

Assumption 3. The intensity correlations have a finite range, say ¢, such that
9a, () is independent of those settings a; with k — j > ¢.
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3. Numerical results

The rate-distance performance of the decoy-state BB84 1s shown 1n terms of

for all k and n, where G_ and G, are known functions that follow from the

Cauchy-Schwarz constraint, € 1s the correlation range and

ea"+b_—(a++b+) 1 — zpc(e—c —e € )‘ ifn=0

_ ._~fa" b
ea++b+—(a +b )(a+b+> 1 — ch(e—c —e € )‘ ifn> 1.

Here, p, 1s the probability of using 1nten31ty setting € 1n any given protocol
round.

the maximum relative deviation, 0,4, and the correlation range, . A typical

channel model 1s used, with detection efliciency nget = 65%, attenuation
coefficient i = 0.2 dB/km, and dark count rate pg = 7.2 - 1078,

« No correlations

—6max o= 10_6: € = {13295}

4. On the existence of an asymptotic formula

— '5111ax = 10_49 g = {13215}
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1072 1 Omax = 1075, £ € {1,2,5} The so-called post-selection technique 1s invoked to establish the asymptotic

equivalence between the secret key rate against collective attacks and the
corresponding one against coherent attacks, whenever a certain permutation-
invariance property holds. Nevertheless, pulse correlatons of any kind
generally invalidate this property, and therefore the equivalence disappears.

Alternatively, 1n this work we provide a simple and non-standard derivation of
the asymptotic limit, 1n so revealing a necessary and suflicient condition for
the asymptotic formula to apply The condition can be written as

_ Cov| Xl,X]
) -

=1 ]>l
for certain Bernoulli sequencesiX; } _, directly related to the observables, N
being the number of transmitted signals. If the above convergence condition
does not hold, no asymptotic limit exists for the secret key rate.
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