UNIVERSITÉ DE GENÈVE

faculté des sciences

RECEIVER-DEVICE-INDEPENDENT QKD

Marie Ioannou ${ }^{1}$, Maria Ana Pereira ${ }^{1}$, Davide Rusca ${ }^{1}$, Fadri Grünenfelder ${ }^{1}$, Alberto Boaron ${ }^{1}$, Matthieu Perrenoud ${ }^{1}$, Alastair A. Abbott ${ }^{1,2}$, Pavel Sekatski ${ }^{1}$, Jean-Daniel Bancal ${ }^{1,3}$, Nicolas Maring ${ }^{1}$, Hugo Zbinden ${ }^{1}$ \& Nicolas Brunner ${ }^{1}$ ${ }^{1}$ Department of Applied Physics University of Geneva, 1211 Geneva, Switzerland
${ }^{2}$ Univ. Grenoble Alpes, Inria, 38000 Grenoble, France
${ }^{3}$ Université Paris-Saclay, CEA, CNRS, Institut de physique théorique, 91191, Gif-sur-Yvette, France

Overview

Key point:

- Protocol with one partially trusted party and a complete untrusted receiver (in comparison to [1]).
- No assumptions on the receiver, proof against attacks on detectors (in comparison to [2]).
- Simple prepare-and-measure implementation, no need for entanglement (in comparison to [3])

Main results

- Proof of principle experiment demonstrating the feasibility of our proposal.
- Protocols that can tolerate an arbitrarily low transmission efficiency

Fig. 1: Scenario: Based on the observed data $p(b \mid x, y)$, and the assumption that Alice's preparations $\left|\psi_{x}\right\rangle$ have bounded overlap, Alice and Bob can establish a secret key
Assumptions common to all QKD protocols:

1. x, y are chosen independently from Eve
2. No information about x and y leaks to Eve, except via the quantum and classical communication specified in the protocol at the given round
3. Validity of quantum physics.

Additional assumption:

1. The inner-products $\gamma_{x, x^{\prime}}=\left\langle\psi_{x} \mid \psi_{x^{\prime}}\right\rangle$ with $x, x^{\prime}=0, \ldots, n-1$ are bounded.

Protocol

1. Alice chooses
$\bullet \mathbf{r}=\left(r_{0}, r_{1}\right)$ with $0 \leq r_{0}<r_{1} \leq n-1$,

- a key bit k with $k=0,1$.

2. Alice sets $x=r_{k}$ and sends a coherent state $\left|\psi_{x}\right\rangle=|\alpha \cos (\theta / 2)\rangle_{H}\left|\alpha \sin (\theta / 2) e^{i \phi_{x}}\right\rangle_{V}$
3. Bob chooses a basis with $y=0,1 \ldots, n-1$
4. Bob's measures $B_{0 \mid y}=\left|\psi_{y}^{\perp}\right\rangle \psi_{y}^{\perp}, B_{1 \mid y}=\left|\psi_{y}\right\rangle\left\langle\psi_{y}\right|$

Expected statistics: $p(b=0 \mid x, y)=1-e^{-|\alpha|^{2} \sin (\theta)^{2} \sin \left(\frac{2 \pi(x-y)}{n}\right)^{2}}$
5. If $b=0$ and $y=r_{0}$ or $y=r_{1}$ raw key is generated; else the round is discarded

Security analysis

Lower bound on asymptotic key rate per round [4]

$$
\begin{equation*}
R=\left(H_{\min }(A \mid E, \mathrm{succ})-H_{2}[\mathrm{QBER}]\right) p(\mathrm{succ}) \tag{1}
\end{equation*}
$$

- QBER, p (succ) estimated from the data $p(b \mid x, y)$
- Estimation of $H_{\min }(A \mid E$, succ) can be relaxed to a hierarchy of semi-definite programs (SDPs) using solely $p(b \mid x, y)$ and $\gamma_{x, x^{\prime}}[5]$.

Fig. 2: Experimental setup

Fig. 3: Experimental results. (Top) Key rate R as a function of the transmission η for the protocol with $n=2$ states. (Middle) Illustration of the self-testing feature of the protocol. (Bottom) Key rate R vs transmission η for the protocol with $n=3$ states, showing enhanced robustness to losses.

References

- [1] H.-K. Lo, M. Curty, and B. Qi, Phys. Rev. Lett. 108, 130503 (2012)
- [2] M. Tomamichel, C. Lim, N. Gisin, et al., Nat Commun 3, 634 (2012).
- [3] C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, Phys. Rev. A 85, 010301 (2012)
- [4] I. Devetak and A. Winter, Proc. Roy. Soc. A461, 207 (2005).
- [5] Y. Wang, I.W. Primaatmaja, E. Lavie et al., npj Quantum Inf. 5, 17 (2019)

