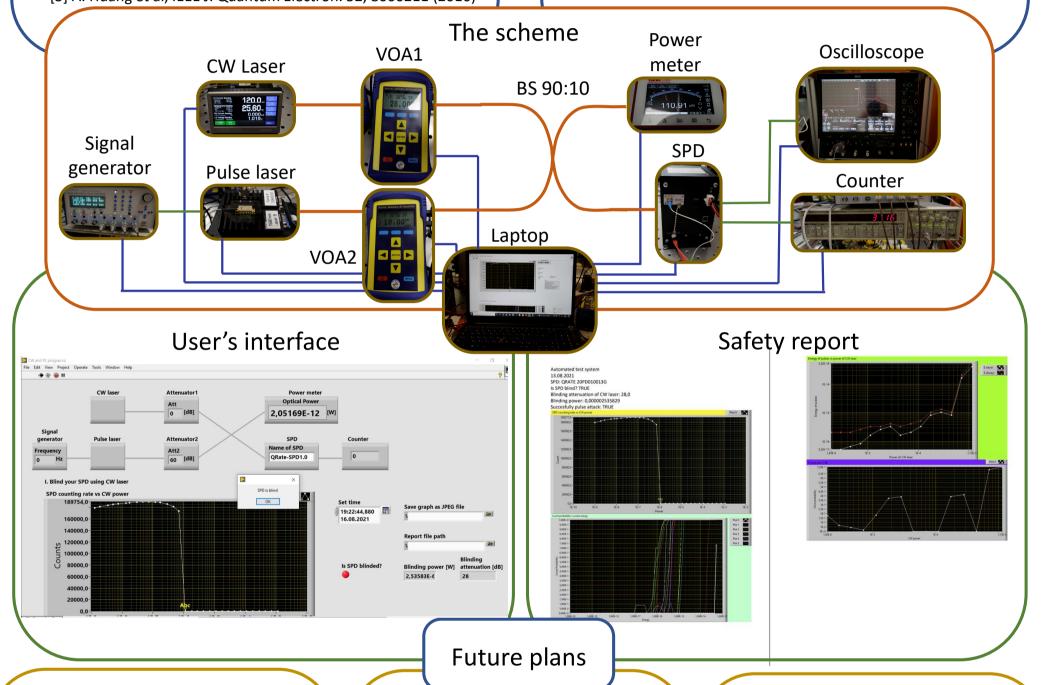
## Automated testbench for checking vulnerability of single-photon detectors to bright-light attack

Konstantin Zaitsev<sup>1,2,\*</sup>, Polina Acheva<sup>1,3</sup> and Vadim Makarov<sup>1,2,4</sup>


#### Solution

- ☐ Single photon detectors (SPDs) can be controlled by bright light attacks, see [1, 2].
- ☐ Many countermeasures suggested must be tested properly. See advanced attack at [3].
- ☐ Proper test by quantum hackers' team takes a lot of time and attention.
  - [1] L. Lydersen et al, Nat. Photonics 4, 686 (2010)

**Problem** 

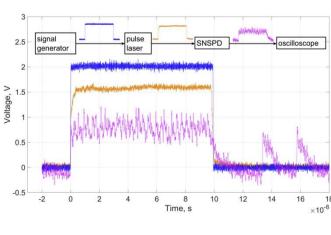
- [2] C. Wiechers et al, New J. Phys. 13, 013043 (2011)
- [3] A. Huang et al, IEEE J. Quantum Electron. 52, 8000211 (2016)

- ✓ Automated testbench that executes known bright-light attacks and their combinations.
- ✓ To apply to SPD CW light at a wide power range with 1-2 dB step (blinding attack).
- ✓ To apply to SPD pulse light at a wide energy range with 1-2 dB step (blinding\after-gate attacks).
- To observe SPD countermeasure (if any).



### Certification

| Layer                                 | Description                                                                                                                                                                                                                                                                             |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q7. Installation and maintenance      | Manual management procedures done by the manuf-                                                                                                                                                                                                                                         |
| Q6. Application interface             | Handles the communication between the quantum c<br>application that has asked for the service. For exampl<br>ated key to an encryption device or key distribution<br>nication this layer transfers secret messages from/to                                                              |
| Q5. Post-processing                   | Handles the post-processing of the raw data. For QK key data, sifting, error correction, privacy amplificati over a classical public channel involved in these steps                                                                                                                    |
| Q4. Operation cycle                   | State machine that decides when to run subsystems i nating between qubit transmission, calibration and o                                                                                                                                                                                |
| Q3. Driver and calibration algorithms | Firmware/software routines that control low-level op optical devices in different regimes                                                                                                                                                                                               |
| Q2. Analog electronics interface      | Electronic signal processing and conditioning betwee<br>devices. This includes for example current-to-voltage<br>frequency filtering, limiting, sampling, timing-to-dig                                                                                                                 |
| Q1. Optics                            | Generation, modulation, transmission and detection<br>and electro-optical components. This includes both of<br>synchronization and calibration. For example, in a do<br>include generation of weak coherent pulses with diff<br>mission, polarization splitting and detection, but also |


\*S. Sajeed et al, Sci. Rep. 11, 5110 (2021)

#### Machine learning Hidden Layer Softmax Layer Input Layer $(n_e)$ (6) Neurons Output LO intensity Attack

(4)

\*Yi. Mao et al, New J. Phys. 22, 083073

# Deeper understanding



\*Intermediate report on SNSDP safety (2021)

<sup>&</sup>lt;sup>1</sup> Russian Quantum Center, Skolkovo, Moscow 121205, Russia

<sup>&</sup>lt;sup>2</sup> NTI Center for Quantum Communications, National University of Science and Technology MISiS, Moscow 119049, Russia <sup>3</sup> Moscow State University of Geodesy and Cartography, 105064 Moscow, Russia

<sup>&</sup>lt;sup>4</sup> Shanghai Branch, National Laboratory for Physical Sciences at Microscale and CAS Center for Excellence in Quantum Information, University of Science and Technology of China, Shanghai 201315, People's Republic of China