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Abstract
Continuous-variable quantum key distribution with phase-shift keying modulation is a promising candidate for practical applications of quantum cryptography due to
high compatibility with existing telecommunication infrastructure. It is known that postselection, i.e., omitting those parts of the raw key where an adversary might
have gained more information than the communicating parties, can improve the secure key rate significantly. We introduce a new cross-shaped postselection strategy
and use a recent numerical security proof framework to compare it to other existing postselection strategies. Furthermore, we provide novel analytical results for the
operators that define the respective postselection regions in phase space for each of the postselection strategies, enabling a quicker evaluation without introducing
additional numerical errors. Motivated by the high computatoinal effort for the error-correction phase, we point out how postselection can be used to reduce the raw
key (so, the data that has to be error-corrected) significantly without lowering the secure key rate considerably. As therefore Bob uses his measurement outcomes
directly without requiring any additional computations, the cross-shaped scheme can be implemented easily both in new and existing QKD systems.

Protocols and Postselection schemes
We examine prepare and measure (P&M) protocols with phase-shift keying modulation and signal states
located on the diagonals of the quadrants. Thanks to the source-replacement scheme, our analy-
sis is also valid for entanglement-based protocols. Alice starts the protocol with state preparation.
She prepares one out of four coherent states |ψk〉 ∈

{∣∣∣|α|ei 1π4 〉 , ∣∣∣|α|ei 3π4 〉 , ∣∣∣|α|ei 5π4 〉 , ∣∣∣|α|ei 7π4 〉}, where
|α| > 0 is the coherent state amplitude, with equal probability and sends them to Bob. The states
are associated with xk ∈ {0, 1, 2, 3}. Once Bob receives the states, he performs heterodyne mea-
surement (measurement phase). This is followed by parameter estimation, where the commu-
nicating parties determine the amount of information an advisory might have gained about the key.

Figure 1: Sketch of the radial & angular (left) and cross-
shaped (right) postselection strategy.

Next, Bob applies a key map to link his mea-
surement results with symbols yk ∈ {0, 1, 2, 3}.
Depending on the chosen postselection strategy
(see Fig. 1), he omits measurement results lying
in certain regions of the phase space. Finally,
Alice and Bob perform error-correction and
privacy amplification.
The operators associated with the post-
selection areas depicted in Fig. 1 can
be represented in the number-basis,
Rz =
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z ∈ {0, 1, 2, 3} is the symbol, associated with the
four quadrants. The matrix elements (depending
on the chosen postselection strategy) are given
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, as we derived in [3].

Theoretical background
We use a recent numerical security proof framework
[1,2] to calculate a reliable lower bound on the secure
key rate in the asymptotic limit. Therefore, for the
case of reverse reconciliation, the secure key rate is
given by

R∞ = min
ρAB∈S

D (G(ρAB)||Z(G(ρAB)))− ppassδEC ,

where D is the quantum relative entropy, G and
Z are maps depending on the protocol, δEC is
the information-leakage per signal in the error-
correction phase and ppass is the sifting-probability.
The set S is the feasible set of the optimisation and
is given by a set of linear constraints

S := {ρAB ∈ D(HAB) | ∀i ∈ I : Tr [ΓiρAB ] = γi} ,

with Hermitian operators Γi and real numbers γi.
The constraints are given by experimental obser-
vations and the fact that Eve does not have ac-
cess to Alice’s lab. It can be shown that the given
problem is a semi-definite program (SDP). Since the
objective-function f(ρ) = D(G(ρ)||Z(G(ρ))) is non-
linear, we solve the problem in a two-step process.
In the first step, the linearised problem is solved it-
eratively using a modified Frank-Wolfe algorithm.
Since we cannot expect to solve the numerical opti-
misation accurately, this gives only an upper bound
on the secure key rate. In the second step, the ob-
tained upper bound is converted into a lower bound,
combining linearisation and the dual of the occur-
ring SDP, taking numerical imprecisions into ac-
count. Finally, the information leakage δEC is given
by

δEC = (1− β)H(Z) + βH(Z|X),

where β is the reconciliation efficiency of the used
error-correction code and X and Z are Alice’s and
Bob’s key-strings respectively.

Results
We investigated the secure key rate as a function of the sifting probability ppass, which is the probability that a given round passes the postprocessing phase.
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Note that 1− ppass is equal to the fraction of the data that is omitted, i.e., does not have to be error-corrected. We
observe that for low transmission distances the cross-shaped postselection scheme yields slightly lower secure key
rates than the radial postselection scheme, while the cross-shaped scheme has a clear advantage for medium to high
distances. In general, we observe that by a proper choice of the postselection parameter (which influences ppass

directly) one can increase the secure key rate while lowering the secure key rate. This effect intensifies for higher
transmission distances. Since the error-correction phase is a well-known bottleneck in many implementations, one
can think this idea even further. As can be seen in the plot on the right (where we chose an excess-noise level of
ξ = 0.01, a transmission distance of L = 100km and we fixed the coherent-state amplitude to |α| = 0.7.), one can
reduce the raw key significantly while still obtaining the same secure key rate as one would have obtained without
performing any postselection. While about half of the raw key can be omitted by radial postselection, using the
cross-shaped postselection scheme, one can reduce the secure key rate by about 75% without decreasing the secure
key rate at a transmission distance of 100km. Since postselection can be introduced easily to every QKD-system
without requiring additional hardware, it provides an simple and low-threshold way to increase the secure key rate
while lowering the raw key moderately or, alternatively, to reduce the raw key considerably, without a significant
drop in the secure key rate compared to not performing postselection at all.
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